On the diffusion approximation of nonconvex stochastic gradient descent

IF 0.4 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Annals of Mathematical Sciences and Applications Pub Date : 2017-05-22 DOI:10.4310/AMSA.2019.V4.N1.A1
Wenqing Hu, C. J. Li, Lei Li, Jian‐Guo Liu
{"title":"On the diffusion approximation of nonconvex stochastic gradient descent","authors":"Wenqing Hu, C. J. Li, Lei Li, Jian‐Guo Liu","doi":"10.4310/AMSA.2019.V4.N1.A1","DOIUrl":null,"url":null,"abstract":"We study the Stochastic Gradient Descent (SGD) method in nonconvex optimization problems from the point of view of approximating diffusion processes. We prove rigorously that the diffusion process can approximate the SGD algorithm weakly using the weak form of master equation for probability evolution. In the small step size regime and the presence of omnidirectional noise, our weak approximating diffusion process suggests the following dynamics for the SGD iteration starting from a local minimizer (resp.~saddle point): it escapes in a number of iterations exponentially (resp.~almost linearly) dependent on the inverse stepsize. The results are obtained using the theory for random perturbations of dynamical systems (theory of large deviations for local minimizers and theory of exiting for unstable stationary points). In addition, we discuss the effects of batch size for the deep neural networks, and we find that small batch size is helpful for SGD algorithms to escape unstable stationary points and sharp minimizers. Our theory indicates that one should increase the batch size at later stage for the SGD to be trapped in flat minimizers for better generalization.","PeriodicalId":42896,"journal":{"name":"Annals of Mathematical Sciences and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2017-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"132","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/AMSA.2019.V4.N1.A1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 132

Abstract

We study the Stochastic Gradient Descent (SGD) method in nonconvex optimization problems from the point of view of approximating diffusion processes. We prove rigorously that the diffusion process can approximate the SGD algorithm weakly using the weak form of master equation for probability evolution. In the small step size regime and the presence of omnidirectional noise, our weak approximating diffusion process suggests the following dynamics for the SGD iteration starting from a local minimizer (resp.~saddle point): it escapes in a number of iterations exponentially (resp.~almost linearly) dependent on the inverse stepsize. The results are obtained using the theory for random perturbations of dynamical systems (theory of large deviations for local minimizers and theory of exiting for unstable stationary points). In addition, we discuss the effects of batch size for the deep neural networks, and we find that small batch size is helpful for SGD algorithms to escape unstable stationary points and sharp minimizers. Our theory indicates that one should increase the batch size at later stage for the SGD to be trapped in flat minimizers for better generalization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于非凸随机梯度下降的扩散逼近
从近似扩散过程的角度研究了随机梯度下降法在非凸优化问题中的应用。利用概率演化主方程的弱形式,严格证明了扩散过程可以弱逼近SGD算法。在小步长和全向噪声存在的情况下,我们的弱近似扩散过程表明,从局部最小值开始的SGD迭代具有以下动态。~鞍点):它在若干次迭代中以指数形式进行转义(例如:(几乎线性)依赖于逆步长。利用动力系统随机扰动理论(局部极小值的大偏差理论和不稳定平稳点的退出理论)得到了结果。此外,我们还讨论了批大小对深度神经网络的影响,我们发现小的批大小有助于SGD算法摆脱不稳定的平稳点和尖锐的最小化。我们的理论表明,应该在后期增加批大小,使SGD被困在平面最小化器中,以便更好地泛化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Mathematical Sciences and Applications
Annals of Mathematical Sciences and Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
10
期刊最新文献
Heat transfer enhancement in free convection flow of MHD second grade fluid with carbon nanotubes (CNTS) over a vertically static plate Fractional electrical circuits: A drazin Inverse Technique Weighted composition operators preserving various Lipschitz constants Topological Properties of some Benzenoid Chemical Structures by Using Face Index A Comparative Study on Solution Methods for Fractional order Delay Differential Equations and its Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1