Very Fast Load Flow Calculation Using Fast-Decoupled Reactive Power Compensation Method for Radial Active Distribution Networks in Smart Grid Environment Based on Zooming Algorithm

O. Honarfar, A. Karimi
{"title":"Very Fast Load Flow Calculation Using Fast-Decoupled Reactive Power Compensation Method for Radial Active Distribution Networks in Smart Grid Environment Based on Zooming Algorithm","authors":"O. Honarfar, A. Karimi","doi":"10.22068/IJEEE.16.3.412","DOIUrl":null,"url":null,"abstract":"Distribution load flow (DLF) calculation is one of the most important tools in distribution networks. DLF tools must be able to perform fast calculations in real-time studies at the presence of distributed generators (DGs) in a smart grid environment even in conditions of change in the network topology. In this paper, a new method for DLF in radial active distribution networks is proposed. The method performs a very fast DLF using zooming algorithm associated with a fast-decoupled reactive power compensation (ZAFDRC) technique, not in all of the buses of the grid, causes to reduce the solution time, which is the most important issue in the real-time studies. The proposed method is based on the zooming algorithm and does not require to calculate the bus-injection to branch-current (BIBC) matrix which reduces the computational burden and helps to decrease the solution time. The method is tested on the IEEE 69-bus systems as a balanced network and the IEEE 123-bus as a very unbalanced system. The results confirm the high accuracy and high speed of the proposed method.","PeriodicalId":39055,"journal":{"name":"Iranian Journal of Electrical and Electronic Engineering","volume":"16 1","pages":"412-424"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Electrical and Electronic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJEEE.16.3.412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Distribution load flow (DLF) calculation is one of the most important tools in distribution networks. DLF tools must be able to perform fast calculations in real-time studies at the presence of distributed generators (DGs) in a smart grid environment even in conditions of change in the network topology. In this paper, a new method for DLF in radial active distribution networks is proposed. The method performs a very fast DLF using zooming algorithm associated with a fast-decoupled reactive power compensation (ZAFDRC) technique, not in all of the buses of the grid, causes to reduce the solution time, which is the most important issue in the real-time studies. The proposed method is based on the zooming algorithm and does not require to calculate the bus-injection to branch-current (BIBC) matrix which reduces the computational burden and helps to decrease the solution time. The method is tested on the IEEE 69-bus systems as a balanced network and the IEEE 123-bus as a very unbalanced system. The results confirm the high accuracy and high speed of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于缩放算法的智能电网环境下径向有功配电网快速解耦无功补偿方法的快速潮流计算
配电网潮流计算是配电网中最重要的工具之一。DLF工具必须能够在智能电网环境中,即使在网络拓扑发生变化的情况下,在分布式发电机(DG)存在的情况下进行实时研究中的快速计算。本文提出了一种径向有源配电网DLF的新方法。该方法使用与快速解耦无功功率补偿(ZAFDRC)技术相关的缩放算法执行非常快速的DLF,而不是在电网的所有总线中,这导致了解决时间的减少,这是实时研究中最重要的问题。该方法基于缩放算法,不需要计算母线注入到支路电流(BIBC)矩阵,减少了计算负担,有助于缩短求解时间。该方法在作为平衡网络的IEEE 69总线系统和作为非常不平衡系统的IEEE 123总线系统上进行了测试。结果证实了该方法的高精度和高速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iranian Journal of Electrical and Electronic Engineering
Iranian Journal of Electrical and Electronic Engineering Engineering-Electrical and Electronic Engineering
CiteScore
1.70
自引率
0.00%
发文量
13
审稿时长
12 weeks
期刊最新文献
Robust Operation Planning With Participation of Flexibility Resources Both on Generation and Demand Sides Under Uncertainty of Wind-based Generation Units A Novel Droop-based Control Strategy for Improving the Performance of VSC-MTDC Systems in Post-Contingency Conditions Securing Reliability Constrained Technology Combination for Isolated Micro-Grid Using Multi-Agent Based Optimization View-Invariant and Robust Gait Recognition Using Gait Energy Images of Leg Region and Masking Altered Sections Multiple Electricity Markets Competitiveness Undergoing Symmetric and Asymmetric Renewables Development Policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1