Komeyl Baghizadeh, N. Cheikhrouhou, K. Govindan, Mahboubeh Ziyarati
{"title":"Sustainable agriculture supply chain network design considering water‐energy‐food nexus using queuing system: A hybrid robust possibilistic programming","authors":"Komeyl Baghizadeh, N. Cheikhrouhou, K. Govindan, Mahboubeh Ziyarati","doi":"10.1111/nrm.12337","DOIUrl":null,"url":null,"abstract":"Due to the nature of the agricultural and food industry, the management of production, storage, transportation, waste disposal and environmental effects of their production, are of great importance. To deal with the sustainability issues linked to their supply chains, we propose in this study a mathematical model to design a sustainable supply chain of highly perishable agricultural product (strawberry). The model is a multiperiod, multiproduct multiobjective MINLP mathematical program that takes into consideration economic, social and environmental objectives to cover all aspects of sustainability. In addition, a G/M/S/M queuing system is developed for the transportation of harvested products between facilities for the first time. Since real‐world problems related to industries such as food and agriculture are inherently uncertain, in this model, the important parameters of the problem are considered uncertain using fuzzy sets theory and a hybrid robust possibilistic programming model is developed. In addition, the Epsilon constraint approach converts the multiobjective mathematical model into a single‐objective one and the Lagrangian relaxation method is used to effectively solve the model on a large scale. A case study in Iran is provided to investigate the results and discuss the solutions. Finally, a sensitivity analysis is performed to identify the impacts of important parameters on the solution. According to the analysis, equipping greenhouses with drip irrigation system and using solar panels in greenhouses, respectively, have the greatest impact on improving all target functions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/nrm.12337","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 14
Abstract
Due to the nature of the agricultural and food industry, the management of production, storage, transportation, waste disposal and environmental effects of their production, are of great importance. To deal with the sustainability issues linked to their supply chains, we propose in this study a mathematical model to design a sustainable supply chain of highly perishable agricultural product (strawberry). The model is a multiperiod, multiproduct multiobjective MINLP mathematical program that takes into consideration economic, social and environmental objectives to cover all aspects of sustainability. In addition, a G/M/S/M queuing system is developed for the transportation of harvested products between facilities for the first time. Since real‐world problems related to industries such as food and agriculture are inherently uncertain, in this model, the important parameters of the problem are considered uncertain using fuzzy sets theory and a hybrid robust possibilistic programming model is developed. In addition, the Epsilon constraint approach converts the multiobjective mathematical model into a single‐objective one and the Lagrangian relaxation method is used to effectively solve the model on a large scale. A case study in Iran is provided to investigate the results and discuss the solutions. Finally, a sensitivity analysis is performed to identify the impacts of important parameters on the solution. According to the analysis, equipping greenhouses with drip irrigation system and using solar panels in greenhouses, respectively, have the greatest impact on improving all target functions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.