The effect of land-use type and climatic conditions on heavy metal pollutants in urban runoff in a semi-arid region

IF 2.3 Q2 Environmental Science Journal of Water Reuse and Desalination Pub Date : 2022-10-31 DOI:10.2166/wrd.2022.046
Shahrokh Soltaninia, L. Taghavi, S. Hosseini, B. Motamedvaziri, S. Eslamian
{"title":"The effect of land-use type and climatic conditions on heavy metal pollutants in urban runoff in a semi-arid region","authors":"Shahrokh Soltaninia, L. Taghavi, S. Hosseini, B. Motamedvaziri, S. Eslamian","doi":"10.2166/wrd.2022.046","DOIUrl":null,"url":null,"abstract":"\n This study examined the effects of land-use changes on heavy metal pollution in runoff in a catchment of Tehran, Iran. Urban runoff samples were collected from six stations, including five various land uses and mixed land uses. The event mean concentration (EMC) was applied to determine heavy metals, including mercury (Hg), arsenic (As), cadmium (Cd), zinc (Zn), lead (Pb), and copper (Cu), in five land uses. Sampling was done during six events with different antecedent dry days (ADDs) during 2019–2020. The result revealed higher heavy metal concentrations in runoff in the industrial land use compared to other land-use types in the catchment. The calculated EMC rates were as follows: EMC Zn > EMC Pb > EMC Cu > EM As > EMC Hg > EMC Cd. This study also found that the maximum and minimum EMCs of heavy metals were associated with rainfall events with 115 and 1 dry days, respectively. In comparison to other heavy metals, mercury and arsenic were at a higher level in runoff as determined by EMC data analysis. In order to minimize the risk of heavy metal contamination of runoff, the relocation of industrial land uses from urban environments to non-urban areas is recommended.","PeriodicalId":17556,"journal":{"name":"Journal of Water Reuse and Desalination","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Reuse and Desalination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wrd.2022.046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 3

Abstract

This study examined the effects of land-use changes on heavy metal pollution in runoff in a catchment of Tehran, Iran. Urban runoff samples were collected from six stations, including five various land uses and mixed land uses. The event mean concentration (EMC) was applied to determine heavy metals, including mercury (Hg), arsenic (As), cadmium (Cd), zinc (Zn), lead (Pb), and copper (Cu), in five land uses. Sampling was done during six events with different antecedent dry days (ADDs) during 2019–2020. The result revealed higher heavy metal concentrations in runoff in the industrial land use compared to other land-use types in the catchment. The calculated EMC rates were as follows: EMC Zn > EMC Pb > EMC Cu > EM As > EMC Hg > EMC Cd. This study also found that the maximum and minimum EMCs of heavy metals were associated with rainfall events with 115 and 1 dry days, respectively. In comparison to other heavy metals, mercury and arsenic were at a higher level in runoff as determined by EMC data analysis. In order to minimize the risk of heavy metal contamination of runoff, the relocation of industrial land uses from urban environments to non-urban areas is recommended.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半干旱区土地利用类型和气候条件对城市径流重金属污染物的影响
这项研究考察了土地利用变化对伊朗德黑兰集水区径流中重金属污染的影响。从六个站点收集了城市径流样本,包括五个不同的土地用途和混合土地用途。事件平均浓度(EMC)用于测定五种土地利用中的重金属,包括汞(Hg)、砷(As)、镉(Cd)、锌(Zn)、铅(Pb)和铜(Cu)。在2019-2020年期间,在六次具有不同前期干旱天数(ADDs)的事件中进行了采样。结果表明,与集水区的其他土地使用类型相比,工业用地径流中的重金属浓度更高。计算的EMC率如下:EMC Zn>EMC Pb>EMC Cu>EM as>EMC Hg>EMC Cd。本研究还发现,重金属的最大和最小EMC分别与115和1个干旱日的降雨事件有关。根据EMC数据分析,与其他重金属相比,径流中的汞和砷含量更高。为了最大限度地降低径流中重金属污染的风险,建议将工业用地从城市环境迁移到非城市地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Water Reuse and Desalination
Journal of Water Reuse and Desalination ENGINEERING, ENVIRONMENTAL-WATER RESOURCES
CiteScore
4.30
自引率
0.00%
发文量
23
审稿时长
16 weeks
期刊介绍: Journal of Water Reuse and Desalination publishes refereed review articles, theoretical and experimental research papers, new findings and issues of unplanned and planned reuse. The journal welcomes contributions from developing and developed countries.
期刊最新文献
Innovative strategies for treatment and management of saline water/wastewater Evaluation of UVLED disinfection for biofouling control during distribution of wastewater effluent Bioremoval efficiency and metabolomic profiles of cellular responses of Chlorella pyrenoidosa to phenol and 4-fluorophenol Construction and empirical research of the evaluation index system of environmental protection enterprises’ competitiveness based on the Delphi and AHP methods Deep learning algorithms were used to generate photovoltaic renewable energy in saline water analysis via an oxidation process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1