{"title":"The Information Protection in Automatic Reconstruction of Not Continuous Geophysical Data Series","authors":"O. Faggioni","doi":"10.4236/jdaip.2019.74013","DOIUrl":null,"url":null,"abstract":"We show a quantitative technique characterized by low numerical mediation for the reconstruction of temporal sequences of geophysical data of length L interrupted for a time ΔT where . The aim is to protect the information acquired before and after the interruption by means of a numerical protocol with the lowest possible calculation weight. The signal reconstruction process is based on the synthesis of the low frequency signal extracted for subsampling (subsampling ∇Dirac = ΔT in phase with ΔT) with the high frequency signal recorded before the crash. The SYRec (SYnthetic REConstruction) method for simplicity and speed of calculation and for spectral response stability is particularly effective in the studies of high speed transient phenomena that develop in very perturbed fields. This operative condition is found a mental when almost immediate informational responses are required to the observation system. In this example we are dealing with geomagnetic data coming from an uw counter intrusion magnetic system. The system produces (on time) information about the transit of local magnetic singularities (magnetic perturbations with low spatial extension), originated by quasi-point form and kinematic sources (divers), in harbors magnetic underwater fields. The performances of stability of the SYRec system make it usable also in long and medium period of observation (activity of geomagnetic observatories).","PeriodicalId":71434,"journal":{"name":"数据分析和信息处理(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"数据分析和信息处理(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/jdaip.2019.74013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We show a quantitative technique characterized by low numerical mediation for the reconstruction of temporal sequences of geophysical data of length L interrupted for a time ΔT where . The aim is to protect the information acquired before and after the interruption by means of a numerical protocol with the lowest possible calculation weight. The signal reconstruction process is based on the synthesis of the low frequency signal extracted for subsampling (subsampling ∇Dirac = ΔT in phase with ΔT) with the high frequency signal recorded before the crash. The SYRec (SYnthetic REConstruction) method for simplicity and speed of calculation and for spectral response stability is particularly effective in the studies of high speed transient phenomena that develop in very perturbed fields. This operative condition is found a mental when almost immediate informational responses are required to the observation system. In this example we are dealing with geomagnetic data coming from an uw counter intrusion magnetic system. The system produces (on time) information about the transit of local magnetic singularities (magnetic perturbations with low spatial extension), originated by quasi-point form and kinematic sources (divers), in harbors magnetic underwater fields. The performances of stability of the SYRec system make it usable also in long and medium period of observation (activity of geomagnetic observatories).