Spatiotemporal Variations in the Urban Heat Islands across the Coastal Cities in the Yangtze River Delta, China

IF 2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Marine Geodesy Pub Date : 2021-04-08 DOI:10.1080/01490419.2021.1897716
Xiao Shi, Yongming Xu, Guojie Wang, Yonghong Liu, Xikun Wei, Xue-Li Hu
{"title":"Spatiotemporal Variations in the Urban Heat Islands across the Coastal Cities in the Yangtze River Delta, China","authors":"Xiao Shi, Yongming Xu, Guojie Wang, Yonghong Liu, Xikun Wei, Xue-Li Hu","doi":"10.1080/01490419.2021.1897716","DOIUrl":null,"url":null,"abstract":"Abstract Over 70% of the cities in China are experiencing urbanization, and urban heat island intensity (UHII) evaluation studies have been widely performed. However, under the rapid economic development in China, few studies on surface urban heat island (SUHI) interannual variations have been conducted in coastal cities in the leading economic region of the Yangtze River Delta. In this study, the long-term summer daytime SUHI from 2001 to 2019 is studied based on the remotely sensed land surface temperature (LST) in 11 coastal cities in the Yangtze River Delta. The results show that notable SUHIs occur in the study area with high spatial heterogeneity, particularly in the central area, including Shanghai, Hangzhou, and Ningbo. The SUHI trends are not synchronous across the study area, with suburban areas revealing higher trends than city center areas. In addition, all 11 cities show an increasing trend of the urban heat proportion index (UHPI) over 19 years, which is more profound in Shanghai and Zhoushan but less profound in Lianyungang and Wenzhou. The strong correlation between the UHPI and artificial impervious coverage indicates that artificial impervious coverage plays an important role in determining the spatial and temporal distributions of the summer daytime SUHI in the 11 coastal cities, which are especially notable in Ningbo and Taizhou.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"44 1","pages":"467 - 484"},"PeriodicalIF":2.0000,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01490419.2021.1897716","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/01490419.2021.1897716","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Over 70% of the cities in China are experiencing urbanization, and urban heat island intensity (UHII) evaluation studies have been widely performed. However, under the rapid economic development in China, few studies on surface urban heat island (SUHI) interannual variations have been conducted in coastal cities in the leading economic region of the Yangtze River Delta. In this study, the long-term summer daytime SUHI from 2001 to 2019 is studied based on the remotely sensed land surface temperature (LST) in 11 coastal cities in the Yangtze River Delta. The results show that notable SUHIs occur in the study area with high spatial heterogeneity, particularly in the central area, including Shanghai, Hangzhou, and Ningbo. The SUHI trends are not synchronous across the study area, with suburban areas revealing higher trends than city center areas. In addition, all 11 cities show an increasing trend of the urban heat proportion index (UHPI) over 19 years, which is more profound in Shanghai and Zhoushan but less profound in Lianyungang and Wenzhou. The strong correlation between the UHPI and artificial impervious coverage indicates that artificial impervious coverage plays an important role in determining the spatial and temporal distributions of the summer daytime SUHI in the 11 coastal cities, which are especially notable in Ningbo and Taizhou.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长江三角洲沿海城市热岛的时空变化特征
摘要中国70%以上的城市正在经历城市化,城市热岛强度(UHII)评价研究已经广泛开展。然而,在我国经济快速发展的背景下,对长江三角洲经济领先区沿海城市地表城市热岛(SUHI)年际变化的研究却很少。本研究基于长江三角洲11个沿海城市的遥感地表温度(LST),对2001-2019年夏季长期白天SUHI进行了研究。结果表明,显著的SUHI发生在空间异质性较高的研究区,特别是在中心区,包括上海、杭州和宁波。整个研究区域的SUHI趋势并不同步,郊区的趋势高于市中心。此外,所有11个城市的城市热比例指数(UHPI)均呈上升趋势,超过19 年,在上海和舟山更为深刻,而在连云港和温州则不那么深刻。UHPI与人工防渗覆盖之间的强相关性表明,人工防渗覆盖在决定11个沿海城市夏季白天SUHI的时空分布中起着重要作用,其中宁波和台州尤为显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine Geodesy
Marine Geodesy 地学-地球化学与地球物理
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: The aim of Marine Geodesy is to stimulate progress in ocean surveys, mapping, and remote sensing by promoting problem-oriented research in the marine and coastal environment. The journal will consider articles on the following topics: topography and mapping; satellite altimetry; bathymetry; positioning; precise navigation; boundary demarcation and determination; tsunamis; plate/tectonics; geoid determination; hydrographic and oceanographic observations; acoustics and space instrumentation; ground truth; system calibration and validation; geographic information systems.
期刊最新文献
Antarctic ice surface properties inferred from Ka and Ku band altimeter waveforms Seafloor Topography Recovery Using the Observation Data of Tiangong-2 Interferometric Imaging Radar Altimeter Adversarial enhancement generation method for side-scan sonar images based on DDPM–YOLO Utilizing Elephant Herd-Inspired Spiking Neural Networks for Enhanced Ship Detection and Classification in Marine Scene Matching Special issue of Marine Geodesy on Remote Sensing of Islands, Reefs, and Coastal Zones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1