Assessment of heavy metal pollution in seawater, benthic flora and fauna and their ability to survive under stressors along the northern Red Sea, Egypt
Ahmed Salah-Tantawy, A. Mahdy, M. Dar, Shuh-Sen Young, Abdelbaset M. A. Abdelreheem
{"title":"Assessment of heavy metal pollution in seawater, benthic flora and fauna and their ability to survive under stressors along the northern Red Sea, Egypt","authors":"Ahmed Salah-Tantawy, A. Mahdy, M. Dar, Shuh-Sen Young, Abdelbaset M. A. Abdelreheem","doi":"10.26881/oahs-2022.4.05","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of this study was to assess the north coasts of the Egyptian Red Sea, including Ras Gharieb, Hurghada, Safaga and Qusier, by evaluating the heavy metal pollution in seawater and benthic flora and fauna in the winter and summer of 2016. The concentrations of heavy metals (Fe, Mn, Zn, Cu, Ni, Cd and Pb) were analysed with an atomic absorption spectrophotometer. The results revealed that the Fe levels in the seawater ranged from 7.86 and 27.95 μg l−1, while the Zn concentrations fell between 1.83 and 5.63 μg l−1. In contrast, the recorded values of Mn, Cu, Ni, Pb and Cd in the seawater were minimal at the study sites. Regarding the biota samples, Porifera species were more adaptable than others to an accumulation of most metals in their tissues. Furthermore, seaweeds and seagrasses demonstrated remarkable adaptation in highly polluted regions, especially those with high turbidity, landfilling, sedimentation and high eutrophication rates – much more than the benthic fauna. Our research highlights the critical need for strict regulation of metal emissions in these coastal regions.","PeriodicalId":19407,"journal":{"name":"Oceanological and Hydrobiological Studies","volume":"51 1","pages":"355 - 370"},"PeriodicalIF":0.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceanological and Hydrobiological Studies","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.26881/oahs-2022.4.05","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The purpose of this study was to assess the north coasts of the Egyptian Red Sea, including Ras Gharieb, Hurghada, Safaga and Qusier, by evaluating the heavy metal pollution in seawater and benthic flora and fauna in the winter and summer of 2016. The concentrations of heavy metals (Fe, Mn, Zn, Cu, Ni, Cd and Pb) were analysed with an atomic absorption spectrophotometer. The results revealed that the Fe levels in the seawater ranged from 7.86 and 27.95 μg l−1, while the Zn concentrations fell between 1.83 and 5.63 μg l−1. In contrast, the recorded values of Mn, Cu, Ni, Pb and Cd in the seawater were minimal at the study sites. Regarding the biota samples, Porifera species were more adaptable than others to an accumulation of most metals in their tissues. Furthermore, seaweeds and seagrasses demonstrated remarkable adaptation in highly polluted regions, especially those with high turbidity, landfilling, sedimentation and high eutrophication rates – much more than the benthic fauna. Our research highlights the critical need for strict regulation of metal emissions in these coastal regions.
期刊介绍:
Oceanological and Hydrobiological Studies is an international journal published by the Institute of Oceanography, University of Gdańsk in Poland. The journal has 4 issues per year and contains papers on all aspects of the marine environment and hydrobiology. All manuscripts are reviewed by editors and independent experts. Based on the referees'' recommendations, the Editor will make a decision on whether to accept a contribution. All articles are published in English. The journal is open to all matters concerning the water environment, thus providing the readers with a wide spectrum of topics in every issue.