Challenges and strategies in analysis of missing data

Xiao‐Hua Zhou
{"title":"Challenges and strategies in analysis of missing data","authors":"Xiao‐Hua Zhou","doi":"10.1080/24709360.2018.1469810","DOIUrl":null,"url":null,"abstract":"In biomedical research, missing data are a common problem. The statistical literature to solve this problem is well developed but overly technical and complicated for health science researchers who are not experts in statistics or methodology. In this paper, we review available statistical methods for handling missing data and provide health science researchers with the means of understanding the importance of missing data in their own personal research, and the ability to use these methods given the available software.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"4 1","pages":"15 - 23"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2018.1469810","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2018.1469810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 10

Abstract

In biomedical research, missing data are a common problem. The statistical literature to solve this problem is well developed but overly technical and complicated for health science researchers who are not experts in statistics or methodology. In this paper, we review available statistical methods for handling missing data and provide health science researchers with the means of understanding the importance of missing data in their own personal research, and the ability to use these methods given the available software.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺失数据分析的挑战和策略
在生物医学研究中,数据缺失是一个常见的问题。解决这个问题的统计文献很发达,但对于不是统计或方法学专家的卫生科学研究人员来说,过于技术性和复杂。在本文中,我们回顾了现有的统计方法来处理缺失数据,并为健康科学研究人员提供了理解缺失数据在他们自己的个人研究中的重要性的手段,以及在现有软件的情况下使用这些方法的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
期刊最新文献
Adjusting for bias due to measurement error in functional quantile regression models with error-prone functional and scalar covariates. The analysis of Salmonella’s ability to survive in different external environments Notice of duplicate publication: public transportation network scan for rapid surveillance Global Odds Model with Proportional Odds and Trend Odds Applied to Gross and Microscopic Brain Infarcts. Flexible and robust procedure for subgroup inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1