CNN Based Covid-19 Detection from Image Processing

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of ICT Research and Applications Pub Date : 2023-04-11 DOI:10.5614/itbj.ict.res.appl.2023.17.1.7
M. Rahman, Mohammad Rabiul Islam, Md. Anzir Hossain Rafath, Simron Mhejabin
{"title":"CNN Based Covid-19 Detection from Image Processing","authors":"M. Rahman, Mohammad Rabiul Islam, Md. Anzir Hossain Rafath, Simron Mhejabin","doi":"10.5614/itbj.ict.res.appl.2023.17.1.7","DOIUrl":null,"url":null,"abstract":"Covid-19 is a respirational condition that looks much like pneumonia. It is highly contagious and has many variants with different symptoms. Covid-19 poses the challenge of discovering new testing and detection methods in biomedical science. X-ray images and CT scans provide high-quality and information-rich images. These images can be processed with a convolutional neural network (CNN) to detect diseases such as Covid-19 in the pulmonary system with high accuracy. Deep learning applied to X-ray images can help to develop methods to identify Covid-19 infection. Based on the research problem, this study defined the outcome as reducing the energy costs and expenses of detecting Covid-19 in X-ray images. Analysis of the results was done by comparing a CNN model with a DenseNet model, where the first achieved more accurate performance than the second.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itbj.ict.res.appl.2023.17.1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Covid-19 is a respirational condition that looks much like pneumonia. It is highly contagious and has many variants with different symptoms. Covid-19 poses the challenge of discovering new testing and detection methods in biomedical science. X-ray images and CT scans provide high-quality and information-rich images. These images can be processed with a convolutional neural network (CNN) to detect diseases such as Covid-19 in the pulmonary system with high accuracy. Deep learning applied to X-ray images can help to develop methods to identify Covid-19 infection. Based on the research problem, this study defined the outcome as reducing the energy costs and expenses of detecting Covid-19 in X-ray images. Analysis of the results was done by comparing a CNN model with a DenseNet model, where the first achieved more accurate performance than the second.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CNN的图像处理新冠肺炎检测
Covid-19是一种呼吸系统疾病,看起来很像肺炎。它具有高度传染性,并且有许多具有不同症状的变体。2019冠状病毒病对在生物医学科学中发现新的检测方法提出了挑战。x射线图像和CT扫描提供高质量和信息丰富的图像。这些图像可以通过卷积神经网络(CNN)进行处理,以高精度检测肺部系统中的Covid-19等疾病。将深度学习应用于x射线图像可以帮助开发识别Covid-19感染的方法。基于研究问题,本研究将结果定义为降低在x射线图像中检测Covid-19的能源成本和费用。对结果的分析是通过比较CNN模型和DenseNet模型来完成的,其中前者比后者获得了更准确的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of ICT Research and Applications
Journal of ICT Research and Applications COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
1.60
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊介绍: Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
期刊最新文献
Smart Card-based Access Control System using Isolated Many-to-Many Authentication Scheme for Electric Vehicle Charging Stations The Evaluation of DyHATR Performance for Dynamic Heterogeneous Graphs Machine Learning-based Early Detection and Prognosis of the Covid-19 Pandemic Improving Robustness Using MixUp and CutMix Augmentation for Corn Leaf Diseases Classification based on ConvMixer Architecture Generative Adversarial Networks Based Scene Generation on Indian Driving Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1