{"title":"A Novel Activation Function of Deep Neural Network","authors":"Xiangyang Lin, Qinghua Xing, Zhang Han, Chen Feng","doi":"10.1155/2023/3873561","DOIUrl":null,"url":null,"abstract":"In deep neural networks, the activation function is an important component. The most popular activation functions at the moment are Sigmoid, Sin, rectified linear unit (ReLU), and some variants of ReLU. However, each of them has its own weakness. To improve the network fitting and generalization ability, a new activation function, TSin, is designed. The basic design idea for TSin function is to rotate the Sin function 45° counterclockwise and then finetune it to give it multiple better properties needed as an activation function, such as nonlinearity, global differentiability, unsaturated property, zero-centered property, monotonicity, quasi identity transformation property, and so on. The first is a theoretical derivation of TSin function by formulas. Then three experiments are designed for performance test. The results show that compared with some popular activation functions, TSin has advantages in terms of training stability, convergence speed, and convergence precision. The study of TSin not only provides a new choice of activation function in deep learning but also provides a new idea for activation function design in the future.","PeriodicalId":22091,"journal":{"name":"Scientific Programming","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2023/3873561","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
In deep neural networks, the activation function is an important component. The most popular activation functions at the moment are Sigmoid, Sin, rectified linear unit (ReLU), and some variants of ReLU. However, each of them has its own weakness. To improve the network fitting and generalization ability, a new activation function, TSin, is designed. The basic design idea for TSin function is to rotate the Sin function 45° counterclockwise and then finetune it to give it multiple better properties needed as an activation function, such as nonlinearity, global differentiability, unsaturated property, zero-centered property, monotonicity, quasi identity transformation property, and so on. The first is a theoretical derivation of TSin function by formulas. Then three experiments are designed for performance test. The results show that compared with some popular activation functions, TSin has advantages in terms of training stability, convergence speed, and convergence precision. The study of TSin not only provides a new choice of activation function in deep learning but also provides a new idea for activation function design in the future.
期刊介绍:
Scientific Programming is a peer-reviewed, open access journal that provides a meeting ground for research results in, and practical experience with, software engineering environments, tools, languages, and models of computation aimed specifically at supporting scientific and engineering computing.
The journal publishes papers on language, compiler, and programming environment issues for scientific computing. Of particular interest are contributions to programming and software engineering for grid computing, high performance computing, processing very large data sets, supercomputing, visualization, and parallel computing. All languages used in scientific programming as well as scientific programming libraries are within the scope of the journal.