Junhao Zhang, Zhen Chen, C. Yakymchuk, Rina Sa, Qiang-tai Huang, Feng Lou, Shuchen Tu, Tao Chen
{"title":"Early Paleozoic crustal anatexis during Wuyi-Yunkai orogenesis: Insights from zircon of Fuhuling migmatites in the Yunkai region, South China","authors":"Junhao Zhang, Zhen Chen, C. Yakymchuk, Rina Sa, Qiang-tai Huang, Feng Lou, Shuchen Tu, Tao Chen","doi":"10.1130/ges02638.1","DOIUrl":null,"url":null,"abstract":"Crustal anatexis is an important process in the tectonic evolution of many orogenic systems. In the Wuyi-Yunkai orogen in the South China block, the duration of partial melting and its relationship with orogenesis are poorly constrained. In this study, we present a multifaceted approach to determine the timing of anatexis and unravel the petrogenesis of Fuhuling migmatites in the Yunkai region of the southwestern South China block. Geochemical analyses indicate that the migmatites have (meta-)sedimentary protoliths. The absence of anhydrous peritectic minerals but the presence of microstructural and outcrop-scale indicators of partial melting suggest that the Fuhuling migmatites experienced fluid-present melting. Complex zoning and variable trace element concentrations in newly formed zircons in migmatites reflect their evolutionary histories during partial melting. Anatectic melt was present at Fuhuling in the Yunkai region from ca. 449–427 Ma during early Paleozoic Wuyi- Yunkai orogenesis. The wide variety of morphologies observed in the Fuhuling migmatites implies that migmatites in the Yunkai region experienced incipient partial melting, melt segregation, and melt migration. Combining new and previous results, we argue that the Yunkai region experienced two stages of crustal anatexis during the early Paleozoic, which may have been triggered by crustal thickening followed by rapid exhumation and orogenic collapse during the intra-plate Wuyi-Yunkai orogeny in the South China block.","PeriodicalId":55100,"journal":{"name":"Geosphere","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/ges02638.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Crustal anatexis is an important process in the tectonic evolution of many orogenic systems. In the Wuyi-Yunkai orogen in the South China block, the duration of partial melting and its relationship with orogenesis are poorly constrained. In this study, we present a multifaceted approach to determine the timing of anatexis and unravel the petrogenesis of Fuhuling migmatites in the Yunkai region of the southwestern South China block. Geochemical analyses indicate that the migmatites have (meta-)sedimentary protoliths. The absence of anhydrous peritectic minerals but the presence of microstructural and outcrop-scale indicators of partial melting suggest that the Fuhuling migmatites experienced fluid-present melting. Complex zoning and variable trace element concentrations in newly formed zircons in migmatites reflect their evolutionary histories during partial melting. Anatectic melt was present at Fuhuling in the Yunkai region from ca. 449–427 Ma during early Paleozoic Wuyi- Yunkai orogenesis. The wide variety of morphologies observed in the Fuhuling migmatites implies that migmatites in the Yunkai region experienced incipient partial melting, melt segregation, and melt migration. Combining new and previous results, we argue that the Yunkai region experienced two stages of crustal anatexis during the early Paleozoic, which may have been triggered by crustal thickening followed by rapid exhumation and orogenic collapse during the intra-plate Wuyi-Yunkai orogeny in the South China block.
期刊介绍:
Geosphere is GSA''s ambitious, online-only publication that addresses the growing need for timely publication of research results, data, software, and educational developments in ways that cannot be addressed by traditional formats. The journal''s rigorously peer-reviewed, high-quality research papers target an international audience in all geoscience fields. Its innovative format encourages extensive use of color, animations, interactivity, and oversize figures (maps, cross sections, etc.), and provides easy access to resources such as GIS databases, data archives, and modeling results. Geosphere''s broad scope and variety of contributions is a refreshing addition to traditional journals.