{"title":"Recognition performance of imputed control chart patterns using exponentially weighted moving average","authors":"R. Haghighati, A. Hassan","doi":"10.1504/EJIE.2018.10015686","DOIUrl":null,"url":null,"abstract":"Performance of control chart pattern recogniser (CCPR) is dependent on the quality of data. Furthermore, when data is partially missing, false alarms and misclassification rate are high. This paper studied CCPR with incomplete data and investigated effectiveness of the exponential smoothing in restoring the patterns aiming to increase the recognition accuracy. The results demonstrated that average overall recognition accuracy degrades from 99.57 (without missingness) to 76.33 in severe missingness. Classification errors in the incomplete random and trend patterns increased up to 38 and 44 times, respectively. Exponential smoothing with a constant of 0.9 is found to be an effective imputation technique. In 50% missingness, recognition accuracy of imputed dataset improved by 99.2% and 19.4% in stable and unstable patterns respectively. Type I error in trend and type II error in random and cyclic patterns were reduced significantly with EWMA imputation. Sensitivity tests proved pattern recognition using proposed imputation technique resulted in superior robustness performance. [Received 28 April 2016; Revised 4 November 2017; Accepted 26 March 2018]","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/EJIE.2018.10015686","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Performance of control chart pattern recogniser (CCPR) is dependent on the quality of data. Furthermore, when data is partially missing, false alarms and misclassification rate are high. This paper studied CCPR with incomplete data and investigated effectiveness of the exponential smoothing in restoring the patterns aiming to increase the recognition accuracy. The results demonstrated that average overall recognition accuracy degrades from 99.57 (without missingness) to 76.33 in severe missingness. Classification errors in the incomplete random and trend patterns increased up to 38 and 44 times, respectively. Exponential smoothing with a constant of 0.9 is found to be an effective imputation technique. In 50% missingness, recognition accuracy of imputed dataset improved by 99.2% and 19.4% in stable and unstable patterns respectively. Type I error in trend and type II error in random and cyclic patterns were reduced significantly with EWMA imputation. Sensitivity tests proved pattern recognition using proposed imputation technique resulted in superior robustness performance. [Received 28 April 2016; Revised 4 November 2017; Accepted 26 March 2018]
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.