Wind turbine pitch bearing fault detection with Bayesian augmented temporal convolutional networks

IF 5.7 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Structural Health Monitoring-An International Journal Pub Date : 2023-07-03 DOI:10.1177/14759217231175886
C. Zhang, Long Zhang
{"title":"Wind turbine pitch bearing fault detection with Bayesian augmented temporal convolutional networks","authors":"C. Zhang, Long Zhang","doi":"10.1177/14759217231175886","DOIUrl":null,"url":null,"abstract":"There are few studies on the fault diagnosis of deep learning in real large-scale bearings, such as wind turbine pitch bearings. We present a novel fault diagnosis method, Bayesian augmented temporal convolutional network (BATCN), to filter the raw signal in wind turbine pitch bearing defect detection. This method, which employs temporal convolutional neural networks, is designed to capture the temporal dependencies of the signal, with such a focus on non-stationary relationships in the collected signals. By referring to the thoughts of Bayesian optimization, our approach can spontaneously find the best patch length that influences fault signal extraction during the filtering process, avoiding manual tuning of this hyper-parameter. This BATCN method is first performed on simulation signals and an open-source dataset of general bearings, and then validated on industrial wind turbine pitch bearings both in the lab and in the real wind farm, where the bearings have been operated for over 15 years. The results show that our method can work well for large-scale slow-speed wind turbine pitch bearings.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring-An International Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14759217231175886","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

There are few studies on the fault diagnosis of deep learning in real large-scale bearings, such as wind turbine pitch bearings. We present a novel fault diagnosis method, Bayesian augmented temporal convolutional network (BATCN), to filter the raw signal in wind turbine pitch bearing defect detection. This method, which employs temporal convolutional neural networks, is designed to capture the temporal dependencies of the signal, with such a focus on non-stationary relationships in the collected signals. By referring to the thoughts of Bayesian optimization, our approach can spontaneously find the best patch length that influences fault signal extraction during the filtering process, avoiding manual tuning of this hyper-parameter. This BATCN method is first performed on simulation signals and an open-source dataset of general bearings, and then validated on industrial wind turbine pitch bearings both in the lab and in the real wind farm, where the bearings have been operated for over 15 years. The results show that our method can work well for large-scale slow-speed wind turbine pitch bearings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯增强时间卷积网络的风机变桨轴承故障检测
很少有研究在真正的大型轴承(如风力涡轮机变桨轴承)中进行深度学习的故障诊断。提出了一种新的故障诊断方法,即贝叶斯增强时间卷积网络(BATCN),用于对风机变桨轴承缺陷检测中的原始信号进行滤波。该方法采用时间卷积神经网络,旨在捕捉信号的时间相关性,重点关注收集信号中的非平稳关系。通过参考贝叶斯优化的思想,我们的方法可以在滤波过程中自发地找到影响故障信号提取的最佳补丁长度,避免了对该超参数的手动调整。这种BATCN方法首先在模拟信号和通用轴承的开源数据集上执行,然后在实验室和实际风电场中对工业风力涡轮机变桨轴承进行验证,这些轴承已经运行了15年以上 年。结果表明,该方法适用于大型低速风机变桨轴承。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.80
自引率
12.10%
发文量
181
审稿时长
4.8 months
期刊介绍: Structural Health Monitoring is an international peer reviewed journal that publishes the highest quality original research that contain theoretical, analytical, and experimental investigations that advance the body of knowledge and its application in the discipline of structural health monitoring.
期刊最新文献
Deep learning-based obstacle-avoiding autonomous UAVs with fiducial marker-based localization for structural health monitoring. Deep learning-based concrete defects classification and detection using semantic segmentation. Combination of active sensing method and data-driven approach for rubber aging detection Distributed fiber optic strain sensing for crack detection with Brillouin shift spectrum back analysis An unsupervised transfer learning approach for rolling bearing fault diagnosis based on dual pseudo-label screening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1