The grindability performance and measurement of surface functional parameter capabilities of difficult-to-machine tool steel under tangential ultrasonic-vibration-assisted dry grinding

IF 2.7 4区 工程技术 Q2 ENGINEERING, MANUFACTURING Machining Science and Technology Pub Date : 2023-05-04 DOI:10.1080/10910344.2023.2224856
Abhimanyu Chaudhari, Ashwani Sharma, M. Z. K. Yusufzai, M. Vashista
{"title":"The grindability performance and measurement of surface functional parameter capabilities of difficult-to-machine tool steel under tangential ultrasonic-vibration-assisted dry grinding","authors":"Abhimanyu Chaudhari, Ashwani Sharma, M. Z. K. Yusufzai, M. Vashista","doi":"10.1080/10910344.2023.2224856","DOIUrl":null,"url":null,"abstract":"Abstract The grinding performance of the finished component is significantly affected by the consistency and durability of the grinding mode used in its formation. The current research attempted to evaluate the influence of worktable feed rate and ultrasonic vibration amplitude on grinding outcomes responses such as ground forces, ground surface morphology, surface roughness and topography, surface bearing index, core fluid retention index, grinding temperature, and chip morphology. Experimental works were performed on a setup that was indigenously developed and manufactured. Experiments were conducted on AISI D2 tool steel workpiece material under the tangential ultrasonic-vibration-assisted dry grinding (TUDG), common dry grinding (CDG), and common flood grinding (CFG) modes to compare the effectiveness of each mode in terms of the responses of the grinding outcomes. A comprehensive comparative analysis of each grinding mode is demonstrated, along with observations of changes in the output responses under the effect of the investigated grinding parameters. Findings showed that under identical conditions, the TUDG mode’s surface bearing index and core fluid retention index was higher than that of the CDG and CFG modes. To elucidate these findings. Besides, small, thin chips generated in TUDG mode indicate the ease of grinding of AISI D2 tool steel.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2023.2224856","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The grinding performance of the finished component is significantly affected by the consistency and durability of the grinding mode used in its formation. The current research attempted to evaluate the influence of worktable feed rate and ultrasonic vibration amplitude on grinding outcomes responses such as ground forces, ground surface morphology, surface roughness and topography, surface bearing index, core fluid retention index, grinding temperature, and chip morphology. Experimental works were performed on a setup that was indigenously developed and manufactured. Experiments were conducted on AISI D2 tool steel workpiece material under the tangential ultrasonic-vibration-assisted dry grinding (TUDG), common dry grinding (CDG), and common flood grinding (CFG) modes to compare the effectiveness of each mode in terms of the responses of the grinding outcomes. A comprehensive comparative analysis of each grinding mode is demonstrated, along with observations of changes in the output responses under the effect of the investigated grinding parameters. Findings showed that under identical conditions, the TUDG mode’s surface bearing index and core fluid retention index was higher than that of the CDG and CFG modes. To elucidate these findings. Besides, small, thin chips generated in TUDG mode indicate the ease of grinding of AISI D2 tool steel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
难加工刀具钢在切向超声振动辅助干磨下的可磨性性能及表面功能参数测量
摘要成品部件的磨削性能在很大程度上受其成形中使用的磨削模式的一致性和耐久性的影响。目前的研究试图评估工作台进给速率和超声振幅对磨削结果响应的影响,如磨削力、磨削表面形态、表面粗糙度和形貌、表面承载指数、芯液保持指数、磨削温度和切屑形态。实验工作是在本土开发和制造的装置上进行的。在切向超声振动辅助干式磨削(TUDG)、普通干式磨削(CDG)和普通溢流磨削(CFG)模式下,对AISI D2工具钢工件材料进行了实验,以比较每种模式对磨削结果响应的有效性。对每种研磨模式进行了全面的比较分析,并观察到在所研究的研磨参数的影响下输出响应的变化。研究结果表明,在相同条件下,TUDG模式的表面承载指数和芯液滞留指数高于CDG和CFG模式。阐明这些发现。此外,TUDG模式下产生的小而薄的切屑表明AISI D2工具钢易于磨削。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machining Science and Technology
Machining Science and Technology 工程技术-材料科学:综合
CiteScore
5.70
自引率
3.70%
发文量
18
审稿时长
6 months
期刊介绍: Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials. Topics covered include: -machining performance of all materials, including lightweight materials- coated and special cutting tools: design and machining performance evaluation- predictive models for machining performance and optimization, including machining dynamics- measurement and analysis of machined surfaces- sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes precision and micro/nano machining- design and implementation of in-process sensors for monitoring and control of machining performance- surface integrity in machining processes, including detection and characterization of machining damage- new and advanced abrasive machining processes: design and performance analysis- cutting fluids and special coolants/lubricants- nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining
期刊最新文献
Investigation on the machining characteristics of AZ91 magnesium alloy using uncoated and CVD-diamond coated WC-Co inserts Combination of minimum quantity lubrication (MQL) with solid lubricant (SL): challenges, predictions and implications for sustainability Novel insights into conventional machining of metal additive manufactured components: a comprehensive review Multiobjective optimization of end milling parameters for enhanced machining performance on 42CrMo4 using machine learning and NSGA-III Flow field design and simulation in electrochemical machining for closed integral components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1