Towards the FAIRification of Scanning Tunneling Microscopy Images

IF 1.3 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Intelligence Pub Date : 2022-08-10 DOI:10.1162/dint_a_00164
Tommaso Rodani, E. Osmenaj, A. Cazzaniga, M. Panighel, C. Africh, S. Cozzini
{"title":"Towards the FAIRification of Scanning Tunneling Microscopy Images","authors":"Tommaso Rodani, E. Osmenaj, A. Cazzaniga, M. Panighel, C. Africh, S. Cozzini","doi":"10.1162/dint_a_00164","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we describe the data management practices and services developed for making FAIR compliant a scientific archive of Scanning Tunneling Microscopy (STM) images. As a first step, we extracted the instrument metadata of each image of the dataset to create a structured database. We then enriched these metadata with information on the structure and composition of the surface by means of a pipeline that leverages human annotation, machine learning techniques, and instrument metadata filtering. To visually explore both images and metadata, as well as to improve the accessibility and usability of the dataset, we developed “STM explorer” as a web service integrated within the Trieste Advanced Data services (TriDAS) website. On top of these data services and tools, we propose an implementation of the W3C PROV standard to describe provenance metadata of STM images.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"5 1","pages":"27-42"},"PeriodicalIF":1.3000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00164","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT In this paper, we describe the data management practices and services developed for making FAIR compliant a scientific archive of Scanning Tunneling Microscopy (STM) images. As a first step, we extracted the instrument metadata of each image of the dataset to create a structured database. We then enriched these metadata with information on the structure and composition of the surface by means of a pipeline that leverages human annotation, machine learning techniques, and instrument metadata filtering. To visually explore both images and metadata, as well as to improve the accessibility and usability of the dataset, we developed “STM explorer” as a web service integrated within the Trieste Advanced Data services (TriDAS) website. On top of these data services and tools, we propose an implementation of the W3C PROV standard to describe provenance metadata of STM images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扫描隧道显微镜图像的精细化研究
摘要在本文中,我们描述了为使符合FAIR的扫描隧道显微镜(STM)图像成为科学档案而开发的数据管理实践和服务。作为第一步,我们提取了数据集每个图像的仪器元数据,以创建一个结构化数据库。然后,我们通过利用人工注释、机器学习技术和仪器元数据过滤的管道,用有关表面结构和组成的信息丰富了这些元数据。为了直观地探索图像和元数据,并提高数据集的可访问性和可用性,我们开发了“STM浏览器”,作为一种集成在的里雅斯特高级数据服务(TriDAS)网站中的web服务。在这些数据服务和工具之上,我们提出了W3C PROV标准的实现来描述STM图像的来源元数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data Intelligence
Data Intelligence COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.50
自引率
15.40%
发文量
40
审稿时长
8 weeks
期刊最新文献
The Limitations and Ethical Considerations of ChatGPT Rule Mining Trends from 1987 to 2022: A Bibliometric Analysis and Visualization Classification and quantification of timestamp data quality issues and its impact on data quality outcome BIKAS: Bio-Inspired Knowledge Acquisition and Simulacrum—A Knowledge Database to Support Multifunctional Design Concept Generation Exploring Attentive Siamese LSTM for Low-Resource Text Plagiarism Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1