Naturally occurring underpressure – a global review

IF 1.9 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Petroleum Geoscience Pub Date : 2022-02-02 DOI:10.1144/petgeo2021-051
T. Birchall, K. Senger, R. Swarbrick
{"title":"Naturally occurring underpressure – a global review","authors":"T. Birchall, K. Senger, R. Swarbrick","doi":"10.1144/petgeo2021-051","DOIUrl":null,"url":null,"abstract":"Several mechanisms have been suggested as drivers of naturally occurring underpressure. However, the phenomenon is largely underrepresented in literature. Previous studies have focused on individual cases in North America, where challenges due to topography and defining hydrostatic gradients exist. More recent publications from underpressured basins have emerged from other parts of the world, where settings are arguably more favourable to studying the phenomenon. Based on a total of 29 underpressured locations, it is apparent that the magnitudes and depths of underpressure are similar throughout the world. Pressures of up to 60 bar blow hydrostatic are common in sedimentary basins of North America, China, Russia, and Europe and typically occur at shallow depths (<2500 m). All occurrences of underpressure occur in areas that have been geologically recently uplifted and is predominantly confined to low permeability rocks. Although rarely tested, it appears that mudstone intervals are susceptible to developing underpressure. Given the shallowness, low permeability, and recent uplift of the cases, it seems that underpressure is typically a geologically short-lived phenomenon. Thematic collection: This article is part of the Geopressure collection available at: https://www.lyellcollection.org/cc/geopressure","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2021-051","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Several mechanisms have been suggested as drivers of naturally occurring underpressure. However, the phenomenon is largely underrepresented in literature. Previous studies have focused on individual cases in North America, where challenges due to topography and defining hydrostatic gradients exist. More recent publications from underpressured basins have emerged from other parts of the world, where settings are arguably more favourable to studying the phenomenon. Based on a total of 29 underpressured locations, it is apparent that the magnitudes and depths of underpressure are similar throughout the world. Pressures of up to 60 bar blow hydrostatic are common in sedimentary basins of North America, China, Russia, and Europe and typically occur at shallow depths (<2500 m). All occurrences of underpressure occur in areas that have been geologically recently uplifted and is predominantly confined to low permeability rocks. Although rarely tested, it appears that mudstone intervals are susceptible to developing underpressure. Given the shallowness, low permeability, and recent uplift of the cases, it seems that underpressure is typically a geologically short-lived phenomenon. Thematic collection: This article is part of the Geopressure collection available at: https://www.lyellcollection.org/cc/geopressure
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自然发生的负压——全球综述
已经提出了几种机制作为自然发生的负压的驱动因素。然而,这一现象在文学中的代表性很大。先前的研究集中在北美的个别案例上,那里存在地形和定义静水梯度的挑战。世界其他地区也出现了关于欠压盆地的最新出版物,这些地区的环境可以说更有利于研究这一现象。基于总共29个负压位置,很明显,世界各地的负压大小和深度相似。压力高达60 棒吹静水压在北美、中国、俄罗斯和欧洲的沉积盆地中很常见,通常发生在浅层(<2500 m) 。所有负压的出现都发生在最近地质抬升的区域,并且主要局限于低渗透岩石。尽管很少进行测试,但泥岩层段似乎容易受到欠压的影响。考虑到浅层、低渗透性和最近的隆起,负压似乎是一种地质上短暂的现象。专题收藏:本文是地质压力收藏的一部分,可在:https://www.lyellcollection.org/cc/geopressure
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Petroleum Geoscience
Petroleum Geoscience 地学-地球科学综合
CiteScore
4.80
自引率
11.80%
发文量
28
审稿时长
>12 weeks
期刊介绍: Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE). Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership. Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.
期刊最新文献
The influence of sedimentary facies, mineralogy, and diagenesis on reservoir properties of the coal-bearing Upper Carboniferous of NW Germany Natural fractures at depth in shale reservoirs: new insights from the southern Sichuan Basin marine shales Petrographic and Petrophysical Characterization of Pre-salt Aptian Carbonate Reservoirs from The Santos Basin, Brazil Simultaneous Well Spacing and Completion Optimization Using Automated Machine Learning Approach. A Case Study of Marcellus Shale Reservoir in the North-Eastern United States Assessing the impact of hydrodynamics on capillary seal capacity: application of the Manzocchi & Childs model in trap analysis workflows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1