A real-time balancing market optimization with personalized prices: From bilevel to convex

IF 3.7 4区 管理学 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Operations Research Perspectives Pub Date : 2023-01-01 DOI:10.1016/j.orp.2023.100276
Koorosh Shomalzadeh , Jacquelien M.A. Scherpen , M. Kanat Camlibel
{"title":"A real-time balancing market optimization with personalized prices: From bilevel to convex","authors":"Koorosh Shomalzadeh ,&nbsp;Jacquelien M.A. Scherpen ,&nbsp;M. Kanat Camlibel","doi":"10.1016/j.orp.2023.100276","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the static economic optimization problem of a system with a single aggregator and multiple prosumers in a Real-Time Balancing Market (RTBM). The aggregator, as the agent responsible for portfolio balancing, needs to minimize the cost for imbalance satisfaction in real-time by proposing a set of optimal personalized prices to the prosumers. On the other hand, the prosumers, as price taker and self-interested agents, want to maximize their profit by changing their supplies or demands and providing flexibility based on the proposed personalized prices. We model this problem as a bilevel optimization problem. We first show that the optimal solution of this bilevel optimization problem can be found by solving an equivalent convex problem. In contrast to the state-of-the-art Mixed-Integer Programming (MIP)-based approach to solve bilevel problems, this convex equivalent has very low computation time and is appropriate for real-time applications. Next, we compare the optimal solutions of the proposed personalized scheme and a uniform pricing scheme. We prove that, under the personalized pricing scheme, more prosumers contribute to the RTBM and the aggregator’s cost is less. Finally, we verify the analytical results of this work by means of numerical case studies and simulations.</p></div>","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"10 ","pages":"Article 100276"},"PeriodicalIF":3.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214716023000118","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the static economic optimization problem of a system with a single aggregator and multiple prosumers in a Real-Time Balancing Market (RTBM). The aggregator, as the agent responsible for portfolio balancing, needs to minimize the cost for imbalance satisfaction in real-time by proposing a set of optimal personalized prices to the prosumers. On the other hand, the prosumers, as price taker and self-interested agents, want to maximize their profit by changing their supplies or demands and providing flexibility based on the proposed personalized prices. We model this problem as a bilevel optimization problem. We first show that the optimal solution of this bilevel optimization problem can be found by solving an equivalent convex problem. In contrast to the state-of-the-art Mixed-Integer Programming (MIP)-based approach to solve bilevel problems, this convex equivalent has very low computation time and is appropriate for real-time applications. Next, we compare the optimal solutions of the proposed personalized scheme and a uniform pricing scheme. We prove that, under the personalized pricing scheme, more prosumers contribute to the RTBM and the aggregator’s cost is less. Finally, we verify the analytical results of this work by means of numerical case studies and simulations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有个性化价格的实时平衡市场优化:从双层到凸面
研究了实时平衡市场中具有单个聚合器和多个产消者系统的静态经济优化问题。聚合器作为负责组合平衡的代理,需要通过向产消者提出一组最优的个性化价格,实时地将不平衡满足的成本最小化。另一方面,生产消费者作为价格接受者和自利的代理人,希望通过改变自己的供给或需求,并根据提出的个性化价格提供灵活性来最大化自己的利润。我们将这个问题建模为一个双层优化问题。我们首先证明了通过求解一个等价的凸问题可以找到这个双层优化问题的最优解。与解决双层问题的最先进的基于混合整数规划(MIP)的方法相比,这种凸等效具有非常低的计算时间,适合于实时应用程序。其次,我们比较了个性化方案和统一定价方案的最优解。我们证明了在个性化定价方案下,更多的生产消费者对RTBM做出了贡献,聚合器的成本更小。最后,通过数值算例和仿真验证了本文的分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Operations Research Perspectives
Operations Research Perspectives Mathematics-Statistics and Probability
CiteScore
6.40
自引率
0.00%
发文量
36
审稿时长
27 days
期刊最新文献
Integrated order acceptance and inventory policy optimization in a multi-period, multi-product hybrid production system Distributional robustness based on Wasserstein-metric approach for humanitarian logistics problem under road disruptions A generalized behavioral-based goal programming approach for decision-making under imprecision δ-perturbation of bilevel optimization problems: An error bound analysis Competitive pricing and seed node selection in a two-echelon supply chain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1