Ting Jennifer, Mohd Ferdaus Isa, J. R. Rajaran, A. Nazimi
{"title":"Patient-Specific Implant for Primary Orbital Reconstruction: A Case Report","authors":"Ting Jennifer, Mohd Ferdaus Isa, J. R. Rajaran, A. Nazimi","doi":"10.21315/aos2022.1702.cr01","DOIUrl":null,"url":null,"abstract":"The main aim of orbital fracture reconstruction is to restore the functional and aesthetic components of the eye. However, it is known that surgery for complex three-dimensional anatomy of the orbit is always a challenge. With recent advancements in technology, surgical predictability and outcomes have greatly improved. Several methods for orbital reconstruction surgery have been documented such as virtual surgical planning, intraoperative navigation, intraoperative imaging, and the use of patient-specific implant (PSI). PSI made of titanium can be designed by using a computer-aided design process and manufacturing (CAD-CAM) of CT-scan routinely used during diagnostic imaging. With precise analyses in shape and size followed by personalised implant design, the surgical precision can be alleviated further and at the same time, the surgical duration could be reduced with anticipation of better surgical outcomes. However, meticulous planning needs to be done preoperatively, with the timing of the surgery being an important factor. In the present case, pure orbital blowout fracture primarily treated with a personalised-implant solution derived from 3D-printing technology is described. Both pre-surgical and surgical workflow of this computer-assisted surgical method is elaborated. PSI for primary orbital reconstruction can be regarded as a viable alternative surgical solution including its working timeframe and adherence to the surgical protocol or algorithm.","PeriodicalId":44961,"journal":{"name":"Archives of Orofacial Science","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Orofacial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21315/aos2022.1702.cr01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
The main aim of orbital fracture reconstruction is to restore the functional and aesthetic components of the eye. However, it is known that surgery for complex three-dimensional anatomy of the orbit is always a challenge. With recent advancements in technology, surgical predictability and outcomes have greatly improved. Several methods for orbital reconstruction surgery have been documented such as virtual surgical planning, intraoperative navigation, intraoperative imaging, and the use of patient-specific implant (PSI). PSI made of titanium can be designed by using a computer-aided design process and manufacturing (CAD-CAM) of CT-scan routinely used during diagnostic imaging. With precise analyses in shape and size followed by personalised implant design, the surgical precision can be alleviated further and at the same time, the surgical duration could be reduced with anticipation of better surgical outcomes. However, meticulous planning needs to be done preoperatively, with the timing of the surgery being an important factor. In the present case, pure orbital blowout fracture primarily treated with a personalised-implant solution derived from 3D-printing technology is described. Both pre-surgical and surgical workflow of this computer-assisted surgical method is elaborated. PSI for primary orbital reconstruction can be regarded as a viable alternative surgical solution including its working timeframe and adherence to the surgical protocol or algorithm.