Yet another look at the omitted variable bias

IF 0.8 4区 经济学 Q3 ECONOMICS Econometric Reviews Pub Date : 2023-01-02 DOI:10.1080/07474938.2022.2157965
Masayuki Hirukawa, Irina Murtazashvili, Artem Prokhorov
{"title":"Yet another look at the omitted variable bias","authors":"Masayuki Hirukawa, Irina Murtazashvili, Artem Prokhorov","doi":"10.1080/07474938.2022.2157965","DOIUrl":null,"url":null,"abstract":"Abstract When conducting regression analysis, econometricians often face the situation where some relevant regressors are unavailable in the data set at hand. This article shows how to construct a new class of nonparametric proxies by combining the original data set with one containing the missing regressors. Imputation of the missing values is done using a nonstandard kernel adapted to mixed data. We derive the asymptotic distribution of the resulting semiparametric two-sample estimator of the parameters of interest and show, using Monte Carlo simulations, that it dominates the solutions involving instrumental variables and other parametric alternatives. An application to the PSID and NLS data illustrates the importance of our estimation approach for empirical research.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"42 1","pages":"1 - 27"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2022.2157965","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract When conducting regression analysis, econometricians often face the situation where some relevant regressors are unavailable in the data set at hand. This article shows how to construct a new class of nonparametric proxies by combining the original data set with one containing the missing regressors. Imputation of the missing values is done using a nonstandard kernel adapted to mixed data. We derive the asymptotic distribution of the resulting semiparametric two-sample estimator of the parameters of interest and show, using Monte Carlo simulations, that it dominates the solutions involving instrumental variables and other parametric alternatives. An application to the PSID and NLS data illustrates the importance of our estimation approach for empirical research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
再来看看被忽略的变量偏差
摘要计量经济学家在进行回归分析时,经常会遇到手头的数据中没有一些相关的回归因子的情况。本文展示了如何通过将原始数据集与包含缺失回归因子的数据集相结合来构造一类新的非参数代理。缺失值的推测是使用适用于混合数据的非标准内核来完成的。我们导出了所得到的感兴趣参数的半参数两样本估计量的渐近分布,并使用蒙特卡罗模拟表明,它在涉及工具变量和其他参数替代的解中占主导地位。PSID和NLS数据的应用说明了我们的估计方法对实证研究的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometric Reviews
Econometric Reviews 管理科学-数学跨学科应用
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.
期刊最新文献
Estimation of random functions proxying for unobservables Bootstrap inference on a factor model based average treatment effects estimator Using machine learning for efficient flexible regression adjustment in economic experiments Lag order selection for long-run variance estimation in econometrics Selecting the number of factors in approximate factor models using group variable regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1