Exergetic analysis in a combined gas-steam power cycle with two regenerators in parallel

IF 5.3 Q1 ENGINEERING, MECHANICAL International Journal of Hydromechatronics Pub Date : 2020-06-15 DOI:10.1504/ijhm.2020.10029837
N. Caetano, E. Barreto, A. C. Ruoso, M. A. Klunk, P. Wander
{"title":"Exergetic analysis in a combined gas-steam power cycle with two regenerators in parallel","authors":"N. Caetano, E. Barreto, A. C. Ruoso, M. A. Klunk, P. Wander","doi":"10.1504/ijhm.2020.10029837","DOIUrl":null,"url":null,"abstract":"This work presents an exergetic analysis applied in a configuration in which two regenerators were in parallel for a combined gas-steam power cycle. The working fluids considered for the gas and vapour cycles were air and water. In this case, two heat recovery steam generators vaporise water and reheat using a steam turbine second stage, where the full power cycle was 10,000 kW. A numerical study was performed from 100 to 7,000 kPa steam pressure. The exergy approach was performed in order to maximise the thermal efficiency. The benefits brought by two regenerators was an increase of 37% in the thermal efficiency. Also, the second regenerator reduces the lost exergy in the exhaust gases. Reductions of 81% were observed in the condenser.","PeriodicalId":29937,"journal":{"name":"International Journal of Hydromechatronics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydromechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijhm.2020.10029837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

This work presents an exergetic analysis applied in a configuration in which two regenerators were in parallel for a combined gas-steam power cycle. The working fluids considered for the gas and vapour cycles were air and water. In this case, two heat recovery steam generators vaporise water and reheat using a steam turbine second stage, where the full power cycle was 10,000 kW. A numerical study was performed from 100 to 7,000 kPa steam pressure. The exergy approach was performed in order to maximise the thermal efficiency. The benefits brought by two regenerators was an increase of 37% in the thermal efficiency. Also, the second regenerator reduces the lost exergy in the exhaust gases. Reductions of 81% were observed in the condenser.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两个蓄热器并联的燃气-蒸汽联合动力循环的运动分析
这项工作介绍了一种应用于两个蓄热器并联用于燃气-蒸汽联合动力循环的配置中的能量分析。气体和蒸汽循环所考虑的工作流体是空气和水。在这种情况下,两台热回收蒸汽发生器使用第二级蒸汽轮机蒸发水并重新加热,其中全功率循环为10000 kW。在100至7000 kPa蒸汽压力下进行了数值研究。执行火用方法是为了最大限度地提高热效率。两个蓄热器带来的好处是热效率提高了37%。此外,第二再生器减少了废气中损失的火用。在冷凝器中观察到81%的减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
32
期刊最新文献
A comparative study of energy-efficient clustering protocols for WSN-internet-of-things A mayfly optimisation method to predict load settlement of reinforced railway tracks on soft subgrade with multi-layer geogrid Parameter optimization design of mixing and distributing system of vertical biaxial bladed mixer Research on singular point characteristics and parameter bifurcation of single DOF nonlinear autonomous bearing system of magnetic-liquid double suspension bearing An improved gated convolutional neural network for rolling bearing fault diagnosis with imbalanced data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1