A modified method for improving the prediction accuracy of the tunnel shaking table model test based on non-direct similarity technique

IF 3.2 Q2 AUTOMATION & CONTROL SYSTEMS Systems Science & Control Engineering Pub Date : 2022-02-28 DOI:10.1080/21642583.2022.2040061
Cheng Wang, Feng Gao, Xukai Tan, Wei Xu
{"title":"A modified method for improving the prediction accuracy of the tunnel shaking table model test based on non-direct similarity technique","authors":"Cheng Wang, Feng Gao, Xukai Tan, Wei Xu","doi":"10.1080/21642583.2022.2040061","DOIUrl":null,"url":null,"abstract":"The tunnel shaking table model test has many influencing factors, and the test parameters are difficult to meet the strict similarity ratio. There are often large errors in predicting prototypes directly using the similarity ratio derived from the classical similarity theory. In order to improve the prediction accuracy of the tunnel shaking table model test, this article proposes a modified method of the traditional similarity theory. Based on the traditional dimensional analysis method, this method uses a non-direct similarity technique to rebuild the dimensional matrix for the main test parameters, derive a new similarity criterion, and then obtain a new similarity ratio. Different from the traditional similarity ratio which is a certain value, the new similarity ratio varies with dynamic parameters, which is more consistent with the actual situation. The tunnel shaking table model test and numerical simulation are carried out to verify the method. Experiments show that the modified method is superior to the traditional similarity theory in numerical prediction accuracy.","PeriodicalId":46282,"journal":{"name":"Systems Science & Control Engineering","volume":"10 1","pages":"104 - 114"},"PeriodicalIF":3.2000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2022.2040061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The tunnel shaking table model test has many influencing factors, and the test parameters are difficult to meet the strict similarity ratio. There are often large errors in predicting prototypes directly using the similarity ratio derived from the classical similarity theory. In order to improve the prediction accuracy of the tunnel shaking table model test, this article proposes a modified method of the traditional similarity theory. Based on the traditional dimensional analysis method, this method uses a non-direct similarity technique to rebuild the dimensional matrix for the main test parameters, derive a new similarity criterion, and then obtain a new similarity ratio. Different from the traditional similarity ratio which is a certain value, the new similarity ratio varies with dynamic parameters, which is more consistent with the actual situation. The tunnel shaking table model test and numerical simulation are carried out to verify the method. Experiments show that the modified method is superior to the traditional similarity theory in numerical prediction accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非直接相似技术提高隧道振动台模型试验预测精度的改进方法
隧道振动台模型试验影响因素较多,试验参数难以满足严格的相似比要求。直接使用从经典相似性理论导出的相似性比率来预测原型往往存在很大的误差。为了提高隧道振动台模型试验的预测精度,本文提出了一种对传统相似理论的改进方法。该方法在传统的量纲分析方法的基础上,利用非直接相似性技术重建主要测试参数的量纲矩阵,推导出新的相似性准则,进而获得新的相似率。与传统的相似度为一定值不同,新的相似度随着动态参数的变化而变化,更符合实际情况。通过隧道振动台模型试验和数值模拟对该方法进行了验证。实验表明,改进后的方法在数值预报精度上优于传统的相似性理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Systems Science & Control Engineering
Systems Science & Control Engineering AUTOMATION & CONTROL SYSTEMS-
CiteScore
9.50
自引率
2.40%
发文量
70
审稿时长
29 weeks
期刊介绍: Systems Science & Control Engineering is a world-leading fully open access journal covering all areas of theoretical and applied systems science and control engineering. The journal encourages the submission of original articles, reviews and short communications in areas including, but not limited to: · artificial intelligence · complex systems · complex networks · control theory · control applications · cybernetics · dynamical systems theory · operations research · systems biology · systems dynamics · systems ecology · systems engineering · systems psychology · systems theory
期刊最新文献
MS-YOLOv5: a lightweight algorithm for strawberry ripeness detection based on deep learning Research on the operation of integrated energy microgrid based on cluster power sharing mechanism Low-frequency operation control method for medium-voltage high-capacity FC-MMC type frequency converter Customized passenger path optimization for airport connections under carbon emissions restrictions Nonlinear impact analysis of built environment on urban road traffic safety risk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1