Crushed turtle shells: Proxies for lithification and burial-depth histories

IF 1.7 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Geosphere Pub Date : 2022-08-18 DOI:10.1130/ges02513.1
Holger Petermann, T. Lyson, Ian M. Miller, J. Hagadorn
{"title":"Crushed turtle shells: Proxies for lithification and burial-depth histories","authors":"Holger Petermann, T. Lyson, Ian M. Miller, J. Hagadorn","doi":"10.1130/ges02513.1","DOIUrl":null,"url":null,"abstract":"We propose a new proxy that employs assemblages of fossil turtle shells to estimate the timing and depth at which fossilization and lithification occur in shallowly buried terrestrial strata. This proxy, the Turtle Compaction Index (TCI), leverages the mechanical failure properties of extant turtle shells and the material properties of sediments that encase fossil turtle shells to estimate the burial depths over which turtle shells become compacted. Because turtle shells are one of the most abundant macroscopic terrestrial fossils in late Mesozoic and younger strata, the compactional attributes of a suite of turtle shells can be paired with geochronologic and stratigraphic data to constrain burial histories of continental settings—a knowledge gap unfilled by traditional burial-depth proxies, most of which are more sensitive to deeper burial depths. Pilot TCI studies of suites of shallowly buried turtle shells from the Denver and Williston basins suggest that such assemblages are sensitive indicators of the depths (~10–500 m) at which fossils and their encasing sediment become sufficiently lithified to inhibit further shell compaction, which is when taphonomic processes correspondingly wane. This work also confirms previously hypothesized shallow Cenozoic burial histories for each of these basins. TCI from mudstone-encased turtle shells can be paired with thicknesses and ages of overlying strata to create geohistorical burial curves that indicate when such post-burial processes were active.","PeriodicalId":55100,"journal":{"name":"Geosphere","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/ges02513.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new proxy that employs assemblages of fossil turtle shells to estimate the timing and depth at which fossilization and lithification occur in shallowly buried terrestrial strata. This proxy, the Turtle Compaction Index (TCI), leverages the mechanical failure properties of extant turtle shells and the material properties of sediments that encase fossil turtle shells to estimate the burial depths over which turtle shells become compacted. Because turtle shells are one of the most abundant macroscopic terrestrial fossils in late Mesozoic and younger strata, the compactional attributes of a suite of turtle shells can be paired with geochronologic and stratigraphic data to constrain burial histories of continental settings—a knowledge gap unfilled by traditional burial-depth proxies, most of which are more sensitive to deeper burial depths. Pilot TCI studies of suites of shallowly buried turtle shells from the Denver and Williston basins suggest that such assemblages are sensitive indicators of the depths (~10–500 m) at which fossils and their encasing sediment become sufficiently lithified to inhibit further shell compaction, which is when taphonomic processes correspondingly wane. This work also confirms previously hypothesized shallow Cenozoic burial histories for each of these basins. TCI from mudstone-encased turtle shells can be paired with thicknesses and ages of overlying strata to create geohistorical burial curves that indicate when such post-burial processes were active.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碎龟壳:岩化和埋藏深度历史的代表
我们提出了一种新的代理方法,利用龟壳化石的组合来估计浅埋陆地地层中发生石化和岩化的时间和深度。这一代理,即海龟压实指数(TCI),利用现存海龟壳的机械失效特性和包裹海龟壳化石的沉积物的材料特性来估计海龟壳压实的埋深。由于龟壳是中生代晚期和年轻地层中最丰富的宏观陆地化石之一,一套龟壳的致密属性可以与地质年代和地层数据相结合,以约束大陆环境的埋葬历史——传统的埋葬深度指标填补了这一知识空白,其中大多数对更深的埋藏深度更敏感。对丹佛盆地和威利斯顿盆地浅埋海龟壳套件的初步TCI研究表明,这些组合是化石及其包裹沉积物充分岩化以抑制进一步贝壳压实的深度(~10-500米)的敏感指标,而此时正是埋藏过程相应减弱的时候。这项工作也证实了之前假设的每个盆地的浅新生代埋藏史。泥岩包裹的龟壳的TCI可以与上覆地层的厚度和年龄配对,以创建地质历史埋藏曲线,指示这种埋藏后过程何时活跃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geosphere
Geosphere 地学-地球科学综合
CiteScore
4.40
自引率
12.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Geosphere is GSA''s ambitious, online-only publication that addresses the growing need for timely publication of research results, data, software, and educational developments in ways that cannot be addressed by traditional formats. The journal''s rigorously peer-reviewed, high-quality research papers target an international audience in all geoscience fields. Its innovative format encourages extensive use of color, animations, interactivity, and oversize figures (maps, cross sections, etc.), and provides easy access to resources such as GIS databases, data archives, and modeling results. Geosphere''s broad scope and variety of contributions is a refreshing addition to traditional journals.
期刊最新文献
U-Pb geochronology and petrography of Neoproterozoic to early Cambrian volcanic rocks in basement crustal terranes beneath the deep-water Gulf of Mexico Precursors to a continental-arc ignimbrite flare-up: Early central volcanoes of the San Juan Mountains, Colorado, USA Provenance shifts in bauxitic clay from Zibo, North China Craton, links tectonics and climate to environmental perturbation Reconciling complex stratigraphic frameworks reveals temporally and geographically variable depositional patterns of the Campanian Ignimbrite Neogene faulting, basin development, and relief generation in the southern Klamath Mountains (USA)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1