Optical pulling forces and their applications

IF 25.2 1区 物理与天体物理 Q1 OPTICS Advances in Optics and Photonics Pub Date : 2020-06-30 DOI:10.1364/aop.378390
Hang Li, Yongyin Cao, Lei-Ming Zhou, Xiaohao Xu, T. Zhu, Yuzhi Shi, C. Qiu, Weiqiang Ding
{"title":"Optical pulling forces and their applications","authors":"Hang Li, Yongyin Cao, Lei-Ming Zhou, Xiaohao Xu, T. Zhu, Yuzhi Shi, C. Qiu, Weiqiang Ding","doi":"10.1364/aop.378390","DOIUrl":null,"url":null,"abstract":"Optical manipulations utilizing the mechanical effect of light have been indispensable in various disciplines. Among those various manipulations, optical pulling has emerged recently as an attractive notion and captivated the popular imagination, not only because it constitutes a rich family of counterintuitive phenomena compared with traditional manipulations but also due to the profound physics underneath and potential applications. Beginning with a general introduction to optical forces, related theories, and methods, we review the progresses achieved in optical pulling forces using different mechanisms and configurations. Similar pulling forces in other forms of waves, including acoustic, water, and quantum matter waves, are also integrated. More importantly, we also include the progresses in counterintuitive left-handed optical torque and lateral optical force as the extensions of the pulling force. As a new manipulation degree of freedom, optical pulling force and related effects have potential applications in remote mass transportation, optical rotating, and optical sorting. They may also stimulate the investigations of counterintuitive phenomena in other forms of waves.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":null,"pages":null},"PeriodicalIF":25.2000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optics and Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/aop.378390","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 60

Abstract

Optical manipulations utilizing the mechanical effect of light have been indispensable in various disciplines. Among those various manipulations, optical pulling has emerged recently as an attractive notion and captivated the popular imagination, not only because it constitutes a rich family of counterintuitive phenomena compared with traditional manipulations but also due to the profound physics underneath and potential applications. Beginning with a general introduction to optical forces, related theories, and methods, we review the progresses achieved in optical pulling forces using different mechanisms and configurations. Similar pulling forces in other forms of waves, including acoustic, water, and quantum matter waves, are also integrated. More importantly, we also include the progresses in counterintuitive left-handed optical torque and lateral optical force as the extensions of the pulling force. As a new manipulation degree of freedom, optical pulling force and related effects have potential applications in remote mass transportation, optical rotating, and optical sorting. They may also stimulate the investigations of counterintuitive phenomena in other forms of waves.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光学拉力及其应用
利用光的机械效应进行光学操作在各个学科中都是必不可少的。在这些不同的操作中,光学牵引最近成为一个有吸引力的概念,并吸引了大众的想象力,这不仅是因为与传统操作相比,它构成了一个丰富的反直觉现象家族,还因为其背后的深刻物理和潜在应用。从光学力、相关理论和方法的一般介绍开始,我们回顾了使用不同机制和配置的光学拉力的进展。其他形式的波,包括声波、水和量子物质波,也会产生类似的拉力。更重要的是,我们还包括了反直觉的左旋光学力矩和侧向光学力作为拉力的扩展的进展。作为一种新的操纵自由度,光学拉力及其相关效应在远程大规模运输、光学旋转和光学分拣中具有潜在的应用前景。它们还可能刺激对其他形式的波中违反直觉的现象的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
56.60
自引率
0.00%
发文量
13
期刊介绍: Advances in Optics and Photonics (AOP) is an all-electronic journal that publishes comprehensive review articles and multimedia tutorials. It is suitable for students, researchers, faculty, business professionals, and engineers interested in optics and photonics. The content of the journal covers advancements in these fields, ranging from fundamental science to engineering applications. The journal aims to capture the most significant developments in optics and photonics. It achieves this through long review articles and comprehensive tutorials written by prominent and respected authors who are at the forefront of their fields. The journal goes beyond traditional text-based articles by enhancing the content with multimedia elements, such as animation and video. This multimedia approach helps to enhance the understanding and visualization of complex concepts. AOP offers dedicated article preparation and peer-review support to assist authors throughout the publication process. This support ensures that the articles meet the journal's standards and are well-received by readers. Additionally, AOP welcomes comments on published review articles, encouraging further discussions and insights from the scientific community. In summary, Advances in Optics and Photonics is a comprehensive journal that provides authoritative and accessible content on advancements in optics and photonics. With its diverse range of articles, multimedia enhancements, and dedicated support, AOP serves as a valuable resource for professionals and researchers in these fields.
期刊最新文献
Mie-Resonant Metaphotonics Collaborative publication of related articles puts focus on emerging topics: editorial Entanglement-based quantum information technology: a tutorial Fundamentals and emerging optical applications of hexagonal boron nitride: a tutorial Spatiotemporal Sculpturing of Light
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1