N. Thiagarajan, J. H. Pedersen, H. Brunstad, J. Rinna, A. Lepland, J. Eiler
{"title":"Clumped isotope constraints on the origins of reservoir methane from the Barents Sea","authors":"N. Thiagarajan, J. H. Pedersen, H. Brunstad, J. Rinna, A. Lepland, J. Eiler","doi":"10.1144/petgeo2021-037","DOIUrl":null,"url":null,"abstract":"The Barents Sea basin is an oil and gas province containing more than 760 million tons of oil equivalents. The reservoir geology of the Barents Sea is complex due to multiple episodes of subsidence, uplift and erosion, which opened a network of extensional and wrench related faults allowing for fluid migration. The multifaceted geological history complicates efforts to describe the source and characteristics of natural gas in the subsurface Barents Sea. Here we apply stable isotopes, including methane clumped isotope measurements, to thirteen natural gases from five (Skrugard Appraisal, Havis, Alta, Filicudi, and Svanefjell) reservoirs in the Loppa High area in the southwestern Barents Sea to estimate the origins of methane. We compare estimates of methane formation temperature based on clumped isotopes to thermal evolution models for the region. We find that the methane has diverse origins including microbial and thermogenic sources forming and equilibrating at temperatures ranging from 34–238°C. Our clumped isotope temperature estimates are consistent with thermal evolution models for the area. These temperatures can be explained by gas generation and expulsion in the oil and gas window followed by isotopic re-equilibration in some reservoirs due to microbial methanogenesis and/or anaerobic oxidation of methane. Gases from the Skrugard Appraisal, Havis and Alta have methane equilibration temperatures consistent with maximum burial temperatures, while gases from Svanefjell have methane equilibration temperatures consistent with current reservoir temperature, suggesting isotope re-equilibration in the shallow reservoir. Gases from Filicudi on the other hand are consistent with generation over multiple points over its thermal history.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2021-037","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The Barents Sea basin is an oil and gas province containing more than 760 million tons of oil equivalents. The reservoir geology of the Barents Sea is complex due to multiple episodes of subsidence, uplift and erosion, which opened a network of extensional and wrench related faults allowing for fluid migration. The multifaceted geological history complicates efforts to describe the source and characteristics of natural gas in the subsurface Barents Sea. Here we apply stable isotopes, including methane clumped isotope measurements, to thirteen natural gases from five (Skrugard Appraisal, Havis, Alta, Filicudi, and Svanefjell) reservoirs in the Loppa High area in the southwestern Barents Sea to estimate the origins of methane. We compare estimates of methane formation temperature based on clumped isotopes to thermal evolution models for the region. We find that the methane has diverse origins including microbial and thermogenic sources forming and equilibrating at temperatures ranging from 34–238°C. Our clumped isotope temperature estimates are consistent with thermal evolution models for the area. These temperatures can be explained by gas generation and expulsion in the oil and gas window followed by isotopic re-equilibration in some reservoirs due to microbial methanogenesis and/or anaerobic oxidation of methane. Gases from the Skrugard Appraisal, Havis and Alta have methane equilibration temperatures consistent with maximum burial temperatures, while gases from Svanefjell have methane equilibration temperatures consistent with current reservoir temperature, suggesting isotope re-equilibration in the shallow reservoir. Gases from Filicudi on the other hand are consistent with generation over multiple points over its thermal history.
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.