Boundary layer flow over a bump and the three-dimensional law of the wall

IF 1.5 4区 工程技术 Q3 MECHANICS Journal of Turbulence Pub Date : 2023-04-03 DOI:10.1080/14685248.2023.2202404
Julie E. Duetsch-Patel, A. Gargiulo, Aurélien Borgoltz, Christopher J. Roy, W. Devenport, K. Lowe
{"title":"Boundary layer flow over a bump and the three-dimensional law of the wall","authors":"Julie E. Duetsch-Patel, A. Gargiulo, Aurélien Borgoltz, Christopher J. Roy, W. Devenport, K. Lowe","doi":"10.1080/14685248.2023.2202404","DOIUrl":null,"url":null,"abstract":"Many turbulence theories in use today are based on two-dimensional equilibrium flows and have limitations when applied to three-dimensional flows. A three-dimensional law of the wall would help to improve simulation fidelity, but while several versions have been proposed, none have been widely accepted. In this study, the three-dimensional attached boundary layer flow over the windward side of the BeVERLI (Benchmark Validation Experiments for RANS/LES Investigations) Hill bump model was measured using near-wall laser Doppler velocimetry in the Virginia Tech Stability Wind Tunnel to study the mean flow and turbulence structure. These mean velocity measurements are compared with the predictions of the proposed three-dimensional (3D) law of the wall of van den Berg [A three-dimensional law of the wall for turbulent shear flows. J Fluid Mech. 1975;70(1):149–160.], which incorporates pressure gradients and inertial effects but assumes alignment of the mean flow gradient and shear-stress angles, and to the sublayer momentum equations, which are exact in the limit of wall-normal . In regions with mild stress/strain misalignment, the van den Berg model compares favourably with the experimental data up to a maximum of , and the sublayer momentum relationship compares favourably with the experimental data in the linear sublayer.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2023.2202404","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

Many turbulence theories in use today are based on two-dimensional equilibrium flows and have limitations when applied to three-dimensional flows. A three-dimensional law of the wall would help to improve simulation fidelity, but while several versions have been proposed, none have been widely accepted. In this study, the three-dimensional attached boundary layer flow over the windward side of the BeVERLI (Benchmark Validation Experiments for RANS/LES Investigations) Hill bump model was measured using near-wall laser Doppler velocimetry in the Virginia Tech Stability Wind Tunnel to study the mean flow and turbulence structure. These mean velocity measurements are compared with the predictions of the proposed three-dimensional (3D) law of the wall of van den Berg [A three-dimensional law of the wall for turbulent shear flows. J Fluid Mech. 1975;70(1):149–160.], which incorporates pressure gradients and inertial effects but assumes alignment of the mean flow gradient and shear-stress angles, and to the sublayer momentum equations, which are exact in the limit of wall-normal . In regions with mild stress/strain misalignment, the van den Berg model compares favourably with the experimental data up to a maximum of , and the sublayer momentum relationship compares favourably with the experimental data in the linear sublayer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
凸块上的边界层流动与壁的三维规律
目前使用的许多湍流理论都是基于二维平衡流,并且在应用于三维流时存在局限性。墙的三维定律将有助于提高模拟逼真度,但尽管已经提出了几个版本,但没有一个被广泛接受。在本研究中,在弗吉尼亚理工大学稳定风洞中使用近壁激光多普勒测速仪测量了BeVERLI(RANS/LES调查基准验证实验)Hill bump模型迎风面上的三维附边界层流动,以研究平均流量和湍流结构。将这些平均速度测量值与所提出的van den Berg壁的三维(3D)定律[湍流剪切流的壁的三维定律.J Fluid Mech.1975;70(1):149–160.]的预测值进行了比较,该定律结合了压力梯度和惯性效应,但假设平均流梯度和剪切应力角对齐,以及精确到壁法线极限的子层动量方程。在具有轻度应力/应变失准的区域中,van den Berg模型与实验数据相比是有利的,最大值为,并且子层动量关系与线性子层中的实验数据相比也是有利的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Turbulence
Journal of Turbulence 物理-力学
CiteScore
3.90
自引率
5.30%
发文量
23
审稿时长
6-12 weeks
期刊介绍: Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence. JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.
期刊最新文献
A comparative study of bandpass-filter-based multi-scale methods for turbulence energy cascade On the physical structure, modelling and computation-based prediction of two-dimensional, smooth-wall turbulent boundary layers subjected to streamwise pressure gradients Large-eddy simulation of shock train in convergent-divergent nozzles with isothermal walls Uniform momentum zones in turbulent channel flow Transient energy transfer and cascade analysis for stratified turbulent channel flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1