Experimental design for verification and validation of harmonic vibration control systems

IF 0.3 4区 工程技术 Q4 ACOUSTICS Noise Control Engineering Journal Pub Date : 2021-09-01 DOI:10.3397/1/376942
J. Wang
{"title":"Experimental design for verification and validation of harmonic vibration control systems","authors":"J. Wang","doi":"10.3397/1/376942","DOIUrl":null,"url":null,"abstract":"Verification and validation represent an important procedure for model-based systems engineering design processes. One of the crucial tasks for verification and validation is to test whether the control system has reached performance limit. This is challenging since complicated theories\n and complex steps are often involved to achieve such an objective; meanwhile, the state of the art for testing performance limit requires iterative procedures. A simple and one-off experimental design for telling whether a control system reaches its performance limit is thus necessitated.\n This article introduces a remarkable test criterion for fulfilling the requirement. Both theoretical foundation and experiment design procedures are presented. Numerical examples are illustrated for the proposed method, where it is also shown that the simple method can be generalized to determining\n performance limit maps over both frequencies and physical parameters.","PeriodicalId":49748,"journal":{"name":"Noise Control Engineering Journal","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3397/1/376942","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Verification and validation represent an important procedure for model-based systems engineering design processes. One of the crucial tasks for verification and validation is to test whether the control system has reached performance limit. This is challenging since complicated theories and complex steps are often involved to achieve such an objective; meanwhile, the state of the art for testing performance limit requires iterative procedures. A simple and one-off experimental design for telling whether a control system reaches its performance limit is thus necessitated. This article introduces a remarkable test criterion for fulfilling the requirement. Both theoretical foundation and experiment design procedures are presented. Numerical examples are illustrated for the proposed method, where it is also shown that the simple method can be generalized to determining performance limit maps over both frequencies and physical parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
谐波控制系统验证与验证的实验设计
验证和确认是基于模型的系统工程设计过程中的一个重要步骤。验证和验证的关键任务之一是测试控制系统是否达到性能极限。这是具有挑战性的,因为实现这一目标往往涉及复杂的理论和复杂的步骤;同时,测试性能极限的技术状态需要迭代过程。因此,需要一种简单的一次性实验设计来判断控制系统是否达到其性能极限。本文介绍了满足这一要求的一个重要的测试标准。给出了理论基础和实验设计步骤。数值算例表明,该方法可以推广到确定频率和物理参数上的性能极限映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Noise Control Engineering Journal
Noise Control Engineering Journal 工程技术-工程:综合
CiteScore
0.90
自引率
25.00%
发文量
37
审稿时长
3 months
期刊介绍: NCEJ is the pre-eminent academic journal of noise control. It is the International Journal of the Institute of Noise Control Engineering of the USA. It is also produced with the participation and assistance of the Korean Society of Noise and Vibration Engineering (KSNVE). NCEJ reaches noise control professionals around the world, covering over 50 national noise control societies and institutes. INCE encourages you to submit your next paper to NCEJ. Choosing NCEJ: Provides the opportunity to reach a global audience of NCE professionals, academics, and students; Enhances the prestige of your work; Validates your work by formal peer review.
期刊最新文献
Research on fast optimal reference sensor placement in active road noise control Warmstarting strategies for convex optimization based multi-channel constrained active noise control filter design A constrained multi-channel hear-through filter design approach using active control formulations Effect of geometrical defects on the acoustical transport properties of periodic porous absorbers manufactured using stereolithography Design and analysis of periodic acoustic metamaterial sound insulator using finite element method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1