A new equation to predict the total potential longshore sediment transport rate in the beach ocean area

Q2 Social Sciences International Journal of Water Pub Date : 2018-08-01 DOI:10.1504/IJW.2018.10014774
S. Khorram, M. Vahedi
{"title":"A new equation to predict the total potential longshore sediment transport rate in the beach ocean area","authors":"S. Khorram, M. Vahedi","doi":"10.1504/IJW.2018.10014774","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel predictive formula for the estimation of the total longshore sediment transport rate (TLSTR) using the incomplete selfsimilarity (ISS) and sediment transport physics principles with the assumption that sediments are mobilised by breaking waves. The key factor in this study is the use of dimensional analysis and self-similarity concepts based on a number of independent variables to develop an integrated classical formula for the noncohesive TLSTR in marine coastal regions. To assess the prediction capability of the proposed formula, high-quality sediment transport and hydrodynamics datasets were gathered and six well-known formulae were employed for both the field and laboratory test conditions. Results show that the novel formula agrees well with both the flume and field data and it is quite suitable both for practical applications in coastal regions and for the numerical modelling of sediment transport and nearshore variations.","PeriodicalId":39788,"journal":{"name":"International Journal of Water","volume":"12 1","pages":"224"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJW.2018.10014774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel predictive formula for the estimation of the total longshore sediment transport rate (TLSTR) using the incomplete selfsimilarity (ISS) and sediment transport physics principles with the assumption that sediments are mobilised by breaking waves. The key factor in this study is the use of dimensional analysis and self-similarity concepts based on a number of independent variables to develop an integrated classical formula for the noncohesive TLSTR in marine coastal regions. To assess the prediction capability of the proposed formula, high-quality sediment transport and hydrodynamics datasets were gathered and six well-known formulae were employed for both the field and laboratory test conditions. Results show that the novel formula agrees well with both the flume and field data and it is quite suitable both for practical applications in coastal regions and for the numerical modelling of sediment transport and nearshore variations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测滩海区总潜在岸沙输沙率的新方程
本文利用不完全自相似原理和输沙物理原理,在破碎波浪对沉积物进行动员的假设下,提出了估算总岸沙输沙率的新预测公式。本研究的关键因素是利用量纲分析和基于多个自变量的自相似概念,建立了海洋沿海地区非内聚TLSTR的综合经典公式。为了评估该公式的预测能力,收集了高质量的输沙和水动力学数据集,并在现场和实验室试验条件下采用了6个知名公式。结果表明,新公式与水槽和野外数据吻合较好,既适合沿海地区的实际应用,也适合泥沙输运和近岸变化的数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Water
International Journal of Water Social Sciences-Geography, Planning and Development
CiteScore
0.40
自引率
0.00%
发文量
0
期刊介绍: The IJW is a fully refereed journal, providing a high profile international outlet for analyses and discussions of all aspects of water, environment and society.
期刊最新文献
Hydrological modelling of Usk River basin in Wales, UK, using geospatial technologies Examining sediment accumulation pattern and storage capacity loss of Lake Ziway, Ethiopia Evaluation of the impact of climate change on water resources and droughts frequency and severity in a small-scale international catchment in the Iberian Peninsula Predicting aluminium using full-scale data of a conventional water treatment plant on Orontes River by ANN, GEP, and DT Perspectives on 2018 water crisis management in Cape Town, South Africa: a systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1