Environmental Sustainability Assessment of a New Sewage Treatment Plant in China Based on Infrastructure Construction and Operation Phases Emergy Analysis
{"title":"Environmental Sustainability Assessment of a New Sewage Treatment Plant in China Based on Infrastructure Construction and Operation Phases Emergy Analysis","authors":"Junxue Zhang, Lin Ma","doi":"10.3390/w12020484","DOIUrl":null,"url":null,"abstract":"Due to excessive resource consumption and pressing environmental issues of the sewage treatment industry, there is extensive attention in China. Given the unique craft production process in the sewage treatment system, a series of integral emergy indicators have been used to evaluate the environmental sustainability based on infrastructure construction and operation stage emergy analysis. Taking a new typical sewage treatment plant as an example, this paper performed a case study. The results illustrate that (1) the infrastructure construction process emergy (approximate 92.6%) is more critical than sewage treatment process emergy; (2) nonrenewable resource is the primary factor for the emergy analysis, followed by energy (23.5%) and purchased supply (7%); (3) cement, steel, and gravel have dominant impacts on the nonrenewable resource emergy; (4) the emergy sustainability index is 0.001101, which displays weak environmental sustainability; (5) the unit emergy value (UEV) of the new sewage treatment plant is 3.40 × 1012 sej/m3; (6) sensitivity analysis results of the hypothesis demonstrate that nonrenewable resources have significant fluctuations (6.903%) while, for the indicators, emergy sustainability index (ESI) (4.8072%) has the most significant impact; and (7) wastewater is a major contributor. In light of comprehensive discussions, two positive measures are proposed in order to ameliorate the environmental sustainability.","PeriodicalId":23788,"journal":{"name":"Water","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2020-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/w12020484","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w12020484","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 27
Abstract
Due to excessive resource consumption and pressing environmental issues of the sewage treatment industry, there is extensive attention in China. Given the unique craft production process in the sewage treatment system, a series of integral emergy indicators have been used to evaluate the environmental sustainability based on infrastructure construction and operation stage emergy analysis. Taking a new typical sewage treatment plant as an example, this paper performed a case study. The results illustrate that (1) the infrastructure construction process emergy (approximate 92.6%) is more critical than sewage treatment process emergy; (2) nonrenewable resource is the primary factor for the emergy analysis, followed by energy (23.5%) and purchased supply (7%); (3) cement, steel, and gravel have dominant impacts on the nonrenewable resource emergy; (4) the emergy sustainability index is 0.001101, which displays weak environmental sustainability; (5) the unit emergy value (UEV) of the new sewage treatment plant is 3.40 × 1012 sej/m3; (6) sensitivity analysis results of the hypothesis demonstrate that nonrenewable resources have significant fluctuations (6.903%) while, for the indicators, emergy sustainability index (ESI) (4.8072%) has the most significant impact; and (7) wastewater is a major contributor. In light of comprehensive discussions, two positive measures are proposed in order to ameliorate the environmental sustainability.
期刊介绍:
Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.