Geochemistry of the chromitite stringer at the contact of the mafic sequence and the ultramafic sequence in the Unki Mine area, Shurugwi Subchamber of the Great Dyke, Zimbabwe

IF 1.1 4区 地球科学 Q3 MINERALOGY Canadian Mineralogist Pub Date : 2020-05-01 DOI:10.3749/canmin.1900052
J. Chaumba, C. Musa
{"title":"Geochemistry of the chromitite stringer at the contact of the mafic sequence and the ultramafic sequence in the Unki Mine area, Shurugwi Subchamber of the Great Dyke, Zimbabwe","authors":"J. Chaumba, C. Musa","doi":"10.3749/canmin.1900052","DOIUrl":null,"url":null,"abstract":"\n Several models have been proposed to explain the origin of a chromitite stringer located at the contact between the Mafic and Ultramafic Sequences in the Unki Mine area of the Shurugwi Subchamber of the Great Dyke, Zimbabwe. A petrographic and geochemical study of this chromitite stringer was undertaken with the aim of constraining its origin. Forty-three chromite compositions were obtained from the studied chromitite stringer, which is characterized by a chromium number between 59.9 and 62.8 and a magnesium number which ranges from 37.8 to 46.4. The chromites at the contact zone in the Unki Mine commonly contains inclusions of sulfides, orthopyroxene, plagioclase, and/or amphiboles. The chromites likely formed early in the crystallization history of the Mafic Sequence, as they are commonly partially rimmed by sulfides and they occur as inclusions in plagioclase crystals. Unlike chromites from underlying Ultramafic Sequence chromitite layers, chromites at the contact zone contain low Cr2O3 contents which range from 39.4 to 42.6 wt.%. Furthermore, these chromites are enriched in Fe compared to most Great Dyke chromitites, which is interpreted to be a consequence of subsolidus exchange of Mg into orthopyroxene and Fe into the chromite. The absence of zoning in the chromites at this contact zone, and their low Mn, Fe contents, is consistent with attainment of equilibrium because the altered chromites often contain Cr-bearing magnetite rims. Two possible models for the formation of this chromitite stringer are mixing of relatively primitive and evolved magmas (i.e., ultramafic and anorthositic magma), possibly of different oxygen fugacities, and chemical diffusion across the contact between the Mafic and the Ultramafic sequences which resulted in melting at and below this boundary. The latter would have caused preferential loss of orthopyroxene from the underlying P1 Pyroxenite Layer, accompanied by re-precipitation of chromite at this contact.","PeriodicalId":9455,"journal":{"name":"Canadian Mineralogist","volume":"58 1","pages":"313-333"},"PeriodicalIF":1.1000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3749/canmin.1900052","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mineralogist","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3749/canmin.1900052","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINERALOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Several models have been proposed to explain the origin of a chromitite stringer located at the contact between the Mafic and Ultramafic Sequences in the Unki Mine area of the Shurugwi Subchamber of the Great Dyke, Zimbabwe. A petrographic and geochemical study of this chromitite stringer was undertaken with the aim of constraining its origin. Forty-three chromite compositions were obtained from the studied chromitite stringer, which is characterized by a chromium number between 59.9 and 62.8 and a magnesium number which ranges from 37.8 to 46.4. The chromites at the contact zone in the Unki Mine commonly contains inclusions of sulfides, orthopyroxene, plagioclase, and/or amphiboles. The chromites likely formed early in the crystallization history of the Mafic Sequence, as they are commonly partially rimmed by sulfides and they occur as inclusions in plagioclase crystals. Unlike chromites from underlying Ultramafic Sequence chromitite layers, chromites at the contact zone contain low Cr2O3 contents which range from 39.4 to 42.6 wt.%. Furthermore, these chromites are enriched in Fe compared to most Great Dyke chromitites, which is interpreted to be a consequence of subsolidus exchange of Mg into orthopyroxene and Fe into the chromite. The absence of zoning in the chromites at this contact zone, and their low Mn, Fe contents, is consistent with attainment of equilibrium because the altered chromites often contain Cr-bearing magnetite rims. Two possible models for the formation of this chromitite stringer are mixing of relatively primitive and evolved magmas (i.e., ultramafic and anorthositic magma), possibly of different oxygen fugacities, and chemical diffusion across the contact between the Mafic and the Ultramafic sequences which resulted in melting at and below this boundary. The latter would have caused preferential loss of orthopyroxene from the underlying P1 Pyroxenite Layer, accompanied by re-precipitation of chromite at this contact.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
津巴布韦Great Dyke Shurugwi Subchaber Unki矿区镁铁质序列和超镁铁质序列接触处铬铁矿细脉的地球化学
人们提出了几种模型来解释位于津巴布韦大堤Shurugwi亚室Unki矿区基岩和超基岩层序接触处的铬铁矿条带的起源。对该铬铁矿细带进行了岩石学和地球化学研究,以确定其成因。从所研究的铬铁矿串中得到43种铬铁矿组成,其铬值为59.9 ~ 62.8,镁值为37.8 ~ 46.4。温基矿接触带铬铁矿通常含有硫化物、正辉石、斜长石和/或角闪石包裹体。铬铁矿可能形成于镁铁质层序结晶史的早期,它们通常部分被硫化物包围,并以包裹体的形式出现在斜长石晶体中。与下伏超镁基层序铬铁矿不同,接触带铬铁矿的Cr2O3含量较低,为39.4% ~ 42.6 wt.%。此外,与大多数大堤铬铁矿相比,这些铬铁矿富含铁,这被解释为镁转化为正辉石和铁转化为铬铁矿的亚固体交换的结果。该接触带铬铁矿没有分带,且锰、铁含量较低,与蚀变铬铁矿通常含有含铬磁铁矿边缘,从而达到平衡相一致。这一铬铁矿条纹形成的两种可能的模式是相对原始和演化的岩浆(即超镁铁质岩浆和斜长岩岩浆)的混合,可能具有不同的氧逸度,以及化学扩散穿过镁铁质和超镁铁质层序之间的接触,导致在这一边界处和以下熔化。后者可能导致下伏的P1辉石层中正辉石的优先损失,并伴随着铬铁矿在此接触处的再沉淀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Canadian Mineralogist
Canadian Mineralogist 地学-矿物学
CiteScore
2.20
自引率
22.20%
发文量
45
审稿时长
4-8 weeks
期刊介绍: Since 1962, The Canadian Mineralogist has published papers dealing with all aspects of mineralogy, crystallography, petrology, economic geology, geochemistry, and applied mineralogy.
期刊最新文献
Systematic review of health-related quality of life (HRQoL) issues associated with gastric cancer: capturing cross-cultural differences. Complex Weblike Hydrogen Bonding in Large “Drain Pipe” Channels of Wightmanite Revealed by New X-Ray and Spectroscopic Measurements From Structure Topology to Chemical Composition. XXIX. Revision of the Crystal Structure of Perraultite, NaBaMn4Ti2(Si2O7)2O2(OH)2F, a Seidozerite-Supergroup TS-Block Mineral from the Oktyabr'skii Massif, Ukraine, and Discreditation of Surkhobite Fleetite, Cu2RhIrSb2, a New Species of Platinum-Group Mineral from the Miass Placer Zone, Southern Urals, Russia Sveite from the Northeastern San Joaquin Valley, California
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1