{"title":"Climatology and changes in extratropical cyclone activity in the Southern Hemisphere during austral winters from 1948 to 2017","authors":"Xinyue Zhan, Lei Chen","doi":"10.1175/jamc-d-22-0061.1","DOIUrl":null,"url":null,"abstract":"\nAn objective detection and tracking algorithm based on relative vorticity at 850 hPa using National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) Reanalysis I data was applied to track cyclones in the Southern Hemisphere during austral winters from 1948 to 2017. The climatological characteristics of extratropical cyclones, including track density, frequency, intensity, lifetime, and their related variabilities, are discussed. The frequency and average lifetime of cyclones have substantially decreased. The average maximum intensity of cyclones has shown an increasing trend over the 70 year study period. The cyclone track density shows a decreasing trend in lower latitudes, consistent with the region where the upper troposphere zonal wind weakens. Baroclinicity can explain the increase in cyclone intensity: when a cyclone moves to higher latitudes and enters the region with greater baroclinicity, it strengthens. As there is no discernible increase in cyclogenesis in the medium latitudes (45°–70°S), but significantly less cyclogenesis in lower and higher latitudes, it is hypothesized that there is no clear poleward cyclogenesis shift over the Southern Hemisphere.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology and Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jamc-d-22-0061.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
An objective detection and tracking algorithm based on relative vorticity at 850 hPa using National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) Reanalysis I data was applied to track cyclones in the Southern Hemisphere during austral winters from 1948 to 2017. The climatological characteristics of extratropical cyclones, including track density, frequency, intensity, lifetime, and their related variabilities, are discussed. The frequency and average lifetime of cyclones have substantially decreased. The average maximum intensity of cyclones has shown an increasing trend over the 70 year study period. The cyclone track density shows a decreasing trend in lower latitudes, consistent with the region where the upper troposphere zonal wind weakens. Baroclinicity can explain the increase in cyclone intensity: when a cyclone moves to higher latitudes and enters the region with greater baroclinicity, it strengthens. As there is no discernible increase in cyclogenesis in the medium latitudes (45°–70°S), but significantly less cyclogenesis in lower and higher latitudes, it is hypothesized that there is no clear poleward cyclogenesis shift over the Southern Hemisphere.
期刊介绍:
The Journal of Applied Meteorology and Climatology (JAMC) (ISSN: 1558-8424; eISSN: 1558-8432) publishes applied research on meteorology and climatology. Examples of meteorological research include topics such as weather modification, satellite meteorology, radar meteorology, boundary layer processes, physical meteorology, air pollution meteorology (including dispersion and chemical processes), agricultural and forest meteorology, mountain meteorology, and applied meteorological numerical models. Examples of climatological research include the use of climate information in impact assessments, dynamical and statistical downscaling, seasonal climate forecast applications and verification, climate risk and vulnerability, development of climate monitoring tools, and urban and local climates.