Climatology and changes in extratropical cyclone activity in the Southern Hemisphere during austral winters from 1948 to 2017

IF 2.6 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Applied Meteorology and Climatology Pub Date : 2023-07-21 DOI:10.1175/jamc-d-22-0061.1
Xinyue Zhan, Lei Chen
{"title":"Climatology and changes in extratropical cyclone activity in the Southern Hemisphere during austral winters from 1948 to 2017","authors":"Xinyue Zhan, Lei Chen","doi":"10.1175/jamc-d-22-0061.1","DOIUrl":null,"url":null,"abstract":"\nAn objective detection and tracking algorithm based on relative vorticity at 850 hPa using National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) Reanalysis I data was applied to track cyclones in the Southern Hemisphere during austral winters from 1948 to 2017. The climatological characteristics of extratropical cyclones, including track density, frequency, intensity, lifetime, and their related variabilities, are discussed. The frequency and average lifetime of cyclones have substantially decreased. The average maximum intensity of cyclones has shown an increasing trend over the 70 year study period. The cyclone track density shows a decreasing trend in lower latitudes, consistent with the region where the upper troposphere zonal wind weakens. Baroclinicity can explain the increase in cyclone intensity: when a cyclone moves to higher latitudes and enters the region with greater baroclinicity, it strengthens. As there is no discernible increase in cyclogenesis in the medium latitudes (45°–70°S), but significantly less cyclogenesis in lower and higher latitudes, it is hypothesized that there is no clear poleward cyclogenesis shift over the Southern Hemisphere.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology and Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jamc-d-22-0061.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

An objective detection and tracking algorithm based on relative vorticity at 850 hPa using National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) Reanalysis I data was applied to track cyclones in the Southern Hemisphere during austral winters from 1948 to 2017. The climatological characteristics of extratropical cyclones, including track density, frequency, intensity, lifetime, and their related variabilities, are discussed. The frequency and average lifetime of cyclones have substantially decreased. The average maximum intensity of cyclones has shown an increasing trend over the 70 year study period. The cyclone track density shows a decreasing trend in lower latitudes, consistent with the region where the upper troposphere zonal wind weakens. Baroclinicity can explain the increase in cyclone intensity: when a cyclone moves to higher latitudes and enters the region with greater baroclinicity, it strengthens. As there is no discernible increase in cyclogenesis in the medium latitudes (45°–70°S), but significantly less cyclogenesis in lower and higher latitudes, it is hypothesized that there is no clear poleward cyclogenesis shift over the Southern Hemisphere.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1948年至2017年南半球冬季气候和温带气旋活动的变化
利用美国国家环境预报中心-国家大气研究中心(NCEP-NCAR)再分析I数据,采用基于850 hPa相对涡度的客观检测和跟踪算法,对1948 - 2017年南半球冬季的气旋进行了跟踪。讨论了温带气旋的气候特征,包括轨道密度、频率、强度、寿命及其相关变率。气旋的频率和平均寿命已大大减少。在70年的研究期间,气旋的平均最大强度呈增加趋势。低纬度气旋路径密度呈下降趋势,与对流层高空纬向风减弱的区域一致。斜压性可以解释气旋强度的增加:当气旋向高纬度移动并进入斜压性较大的区域时,气旋强度增强。由于在中纬度地区(45°-70°S)没有明显的气旋形成增加,但在低纬度和高纬度地区气旋形成明显减少,因此假设南半球没有明显的极地气旋形成转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Meteorology and Climatology
Journal of Applied Meteorology and Climatology 地学-气象与大气科学
CiteScore
5.10
自引率
6.70%
发文量
97
审稿时长
3 months
期刊介绍: The Journal of Applied Meteorology and Climatology (JAMC) (ISSN: 1558-8424; eISSN: 1558-8432) publishes applied research on meteorology and climatology. Examples of meteorological research include topics such as weather modification, satellite meteorology, radar meteorology, boundary layer processes, physical meteorology, air pollution meteorology (including dispersion and chemical processes), agricultural and forest meteorology, mountain meteorology, and applied meteorological numerical models. Examples of climatological research include the use of climate information in impact assessments, dynamical and statistical downscaling, seasonal climate forecast applications and verification, climate risk and vulnerability, development of climate monitoring tools, and urban and local climates.
期刊最新文献
A Case Study on Wind Speed Oscillations Offshore the West Coast of Central Taiwan Investigation of Hydrostatic Imbalance with Field Observations Automated and Objective Thunderstorm Identification and Tracking Using Geostationary Lightning Mapper (GLM) Data Long Memory in Average Monthly Temperatures and Precipitations in Guatemala Contrasts of Large-Scale Moisture and Heat Budgets between Different Sea Areas of the South China Sea and the Adjacent Land
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1