Jean Odry, Marie-Amélie Boucher, Philippe Cantet, S. Lachance‐Cloutier, R. Turcotte, P. St-Louis
{"title":"Using artificial neural networks to estimate snow water equivalent from snow depth","authors":"Jean Odry, Marie-Amélie Boucher, Philippe Cantet, S. Lachance‐Cloutier, R. Turcotte, P. St-Louis","doi":"10.1080/07011784.2020.1796817","DOIUrl":null,"url":null,"abstract":"Abstract Snow water equivalent (SWE) is among the most important variables in the hydrological modelling of high latitude and mountainous areas. While manual snow surveys can directly provide SWE measurements, they are time consuming and costly, especially compared to automated snow depth measurements. Moreover, SWE is strongly correlated to snow depth. For this reason, several empirical equations relating snow depth to SWE have been proposed. The present study investigates the potential of artificial neural networks for estimating SWE from snow depth and commonly available data, and the proposed method is compared to existing, regression-based methods. An ensemble of multilayer perceptrons is constructed and trained using gridded meteorological variables and a data set of almost 40,000 SWE and depth measurements from the province of Quebec (eastern Canada). Overall, the proposed artificial neural network-based method reached a RMSE of 28 mm and outperforms by 17% a series of empirical equations for estimating the SWE of an independent set of measurement sites. Nevertheless, all the tested methods demonstrated limits to estimate lowest values of snow bulk density.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07011784.2020.1796817","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/07011784.2020.1796817","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9
Abstract
Abstract Snow water equivalent (SWE) is among the most important variables in the hydrological modelling of high latitude and mountainous areas. While manual snow surveys can directly provide SWE measurements, they are time consuming and costly, especially compared to automated snow depth measurements. Moreover, SWE is strongly correlated to snow depth. For this reason, several empirical equations relating snow depth to SWE have been proposed. The present study investigates the potential of artificial neural networks for estimating SWE from snow depth and commonly available data, and the proposed method is compared to existing, regression-based methods. An ensemble of multilayer perceptrons is constructed and trained using gridded meteorological variables and a data set of almost 40,000 SWE and depth measurements from the province of Quebec (eastern Canada). Overall, the proposed artificial neural network-based method reached a RMSE of 28 mm and outperforms by 17% a series of empirical equations for estimating the SWE of an independent set of measurement sites. Nevertheless, all the tested methods demonstrated limits to estimate lowest values of snow bulk density.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.