Machine-learning models for bankruptcy prediction: do industrial variables matter?

IF 1.5 3区 经济学 Q2 ECONOMICS Spatial Economic Analysis Pub Date : 2021-10-07 DOI:10.1080/17421772.2021.1977377
D. Bragoli, C. Ferretti, P. Ganugi, G. Marseguerra, Davide Mezzogori, F. Zammori
{"title":"Machine-learning models for bankruptcy prediction: do industrial variables matter?","authors":"D. Bragoli, C. Ferretti, P. Ganugi, G. Marseguerra, Davide Mezzogori, F. Zammori","doi":"10.1080/17421772.2021.1977377","DOIUrl":null,"url":null,"abstract":"ABSTRACT We provide a predictive model specifically designed for the Italian economy that classifies solvent and insolvent firms one year in advance using the AIDA Bureau van Dijk data set for the period 2007–15. We apply a full battery of bankruptcy forecasting models, including both traditional and more sophisticated machine-learning techniques, and add to the financial ratios used in the literature a set of industrial/regional variables. We find that XGBoost is the best performer, and that industrial/regional variables are important. Moreover, belonging to a district, having a high mark-up and a greater market share diminish bankruptcy probability.","PeriodicalId":47008,"journal":{"name":"Spatial Economic Analysis","volume":"17 1","pages":"156 - 177"},"PeriodicalIF":1.5000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Economic Analysis","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/17421772.2021.1977377","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 10

Abstract

ABSTRACT We provide a predictive model specifically designed for the Italian economy that classifies solvent and insolvent firms one year in advance using the AIDA Bureau van Dijk data set for the period 2007–15. We apply a full battery of bankruptcy forecasting models, including both traditional and more sophisticated machine-learning techniques, and add to the financial ratios used in the literature a set of industrial/regional variables. We find that XGBoost is the best performer, and that industrial/regional variables are important. Moreover, belonging to a district, having a high mark-up and a greater market share diminish bankruptcy probability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
破产预测的机器学习模型:工业变量重要吗?
我们提供了一个专门为意大利经济设计的预测模型,该模型使用2007 - 2015年期间的AIDA局van Dijk数据集提前一年对有偿债能力和资不抵债的公司进行分类。我们应用了一整套破产预测模型,包括传统的和更复杂的机器学习技术,并在文献中使用的财务比率中添加了一组工业/地区变量。我们发现XGBoost是表现最好的,并且行业/区域变量很重要。而且,同属一个地区,利润率高,市场占有率大,降低了企业破产的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
21.70%
发文量
33
期刊介绍: Spatial Economic Analysis is a pioneering economics journal dedicated to the development of theory and methods in spatial economics, published by two of the world"s leading learned societies in the analysis of spatial economics, the Regional Studies Association and the British and Irish Section of the Regional Science Association International. A spatial perspective has become increasingly relevant to our understanding of economic phenomena, both on the global scale and at the scale of cities and regions. The growth in international trade, the opening up of emerging markets, the restructuring of the world economy along regional lines, and overall strategic and political significance of globalization, have re-emphasised the importance of geographical analysis.
期刊最新文献
Changes in domestic value added from exports: a structural decomposition approach Complexity-based diversification strategies: a new method for ranking promising activities for regional diversification A longitudinal analysis of local innovation in Italy: How do proximity measures matter? Spatial spillover effects in the labour market in a middle-income country Spatial macroeconomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1