A free-rotating ball-shaped transmitting coil with wireless power transfer system for robot joints

IF 1.6 Q4 ENERGY & FUELS Wireless Power Transfer Pub Date : 2019-03-01 DOI:10.1017/WPT.2019.1
Yang Yang, Wenjie Chen, Liyu Dai, Rui Wang
{"title":"A free-rotating ball-shaped transmitting coil with wireless power transfer system for robot joints","authors":"Yang Yang, Wenjie Chen, Liyu Dai, Rui Wang","doi":"10.1017/WPT.2019.1","DOIUrl":null,"url":null,"abstract":"Wireless power transmission (WPT) systems with moveable mechanical parts have been acquired more and more attention during the past decade. However, due to the moveable feature of transmitting coil and receiving coil, misalignment issue lead to extra power loss, decrease in efficiency, increase in control complexity, and unwanted performance degradation of the whole system. Moreover, it happened frequently than those traditional planar coils systems. The motivation for this paper is trying to have a deep understanding of quantitative relationship between ball-shaped coils mutual inductance and misalignment. Based upon that, engineers would know more detail of the coils position and mutual inductance. So, optimized design might be achieved. On considering that, this paper presents a WPT system with a ball-shaped coil for robot joints. A mutual inductance calculation based on filament method aimed at ball-shaped coil is proposed. Based on these, nine different ball-shaped coil solutions are calculated. Then, model with a minimized change rate of mutual inductance against the angular misalignment is chosen as the optimized design. Circuit analysis of the WPT system with the series–series resonant topology is conducted to choose a proper working frequency and load. Finally, an experimental platform is established. It demonstrates the feasibility of the proposed calculation method and the feasibility of the WPT prototype.","PeriodicalId":43105,"journal":{"name":"Wireless Power Transfer","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/WPT.2019.1","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Power Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/WPT.2019.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

Wireless power transmission (WPT) systems with moveable mechanical parts have been acquired more and more attention during the past decade. However, due to the moveable feature of transmitting coil and receiving coil, misalignment issue lead to extra power loss, decrease in efficiency, increase in control complexity, and unwanted performance degradation of the whole system. Moreover, it happened frequently than those traditional planar coils systems. The motivation for this paper is trying to have a deep understanding of quantitative relationship between ball-shaped coils mutual inductance and misalignment. Based upon that, engineers would know more detail of the coils position and mutual inductance. So, optimized design might be achieved. On considering that, this paper presents a WPT system with a ball-shaped coil for robot joints. A mutual inductance calculation based on filament method aimed at ball-shaped coil is proposed. Based on these, nine different ball-shaped coil solutions are calculated. Then, model with a minimized change rate of mutual inductance against the angular misalignment is chosen as the optimized design. Circuit analysis of the WPT system with the series–series resonant topology is conducted to choose a proper working frequency and load. Finally, an experimental platform is established. It demonstrates the feasibility of the proposed calculation method and the feasibility of the WPT prototype.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于机器人关节的带有无线电力传输系统的自由旋转球形发射线圈
近十年来,具有可移动机械部件的无线电力传输系统得到了越来越多的关注。然而,由于发射线圈和接收线圈的可移动特性,不对准问题会导致额外的功率损失,效率降低,控制复杂性增加,整个系统的性能下降。与传统的平面线圈系统相比,其发生频率更高。本文的动机是试图深入理解球形线圈互感与失调之间的定量关系。在此基础上,工程师将了解线圈位置和互感的更多细节。因此,可以实现优化设计。在此基础上,提出了一种采用球形线圈作为机器人关节的WPT系统。针对球形线圈,提出了一种基于细丝法的互感计算方法。在此基础上,计算了九种不同的球形线圈解。在此基础上,选择了对角不对中互感变化率最小的模型作为优化设计。对串联谐振拓扑下的WPT系统进行了电路分析,选择了合适的工作频率和负载。最后,搭建了实验平台。验证了所提计算方法的可行性和WPT样机的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wireless Power Transfer
Wireless Power Transfer ENERGY & FUELS-
CiteScore
2.50
自引率
0.00%
发文量
3
期刊最新文献
Optimizing Energy Storage System Operations and Configuration through a Whale Optimization Algorithm Enhanced with Chaotic Mapping and IoT Data: Enhancing Efficiency and Longevity of Energy Storage Stations Power Transmission Network Optimization Strategy Based on Random Fractal Beetle Antenna Algorithm Stage Spectrum Sensing Technique for Cognitive Radio Network Using Energy and Entropy Detection Optimal Path Planning for Wireless Power Transfer Robot Using Area Division Deep Reinforcement Learning Intelligent Power Grid Video Surveillance Technology Based on Efficient Compression Algorithm Using Robust Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1