{"title":"Orientation of the stream interface in CIRs","authors":"Gergely Koban, A. Opitz, N. Biro, Z. Németh","doi":"10.1051/swsc/2023011","DOIUrl":null,"url":null,"abstract":"Co-rotating Interaction Regions (CIRs) are complex structures in the Heliosphere that arise from the interaction of fast and slow solar wind streams. The interface between fast and slow solar wind is called the stream interface, which often has considerable north-south tilt. We apply a sliding window correlation method on multi-spacecraft data in order to obtain the time delay between the spacecraft. Using these time delays and in-situ solar wind velocity measurements, we can shift the positions of two spacecraft, and, together with the position of the reference spacecraft, we can reconstruct the spatial orientation of the stream interface. We examined four CIRs from two different solar sources at the beginning of 2007 using ACE, WIND and STEREO-A spacecraft data. The gradually increasing distance between STEREO-A and the other spacecraft provide an opportunity to determine the effects of spacecraft separation on the quality of the results. In three out of the four events, the determined planes generally follow the Parker spiral in the ecliptic, their off-ecliptic tilt is determined by the position of the source of the high-speed stream. For the fourth event, STEREO-A was probably too far away for this method to be successfully applicable.","PeriodicalId":17034,"journal":{"name":"Journal of Space Weather and Space Climate","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Weather and Space Climate","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/swsc/2023011","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Co-rotating Interaction Regions (CIRs) are complex structures in the Heliosphere that arise from the interaction of fast and slow solar wind streams. The interface between fast and slow solar wind is called the stream interface, which often has considerable north-south tilt. We apply a sliding window correlation method on multi-spacecraft data in order to obtain the time delay between the spacecraft. Using these time delays and in-situ solar wind velocity measurements, we can shift the positions of two spacecraft, and, together with the position of the reference spacecraft, we can reconstruct the spatial orientation of the stream interface. We examined four CIRs from two different solar sources at the beginning of 2007 using ACE, WIND and STEREO-A spacecraft data. The gradually increasing distance between STEREO-A and the other spacecraft provide an opportunity to determine the effects of spacecraft separation on the quality of the results. In three out of the four events, the determined planes generally follow the Parker spiral in the ecliptic, their off-ecliptic tilt is determined by the position of the source of the high-speed stream. For the fourth event, STEREO-A was probably too far away for this method to be successfully applicable.
期刊介绍:
The Journal of Space Weather and Space Climate (SWSC) is an international multi-disciplinary and interdisciplinary peer-reviewed open access journal which publishes papers on all aspects of space weather and space climate from a broad range of scientific and technical fields including solar physics, space plasma physics, aeronomy, planetology, radio science, geophysics, biology, medicine, astronautics, aeronautics, electrical engineering, meteorology, climatology, mathematics, economy, informatics.