Mahmoud Sheta, A. Elwardany, S. Ookawara, Hamdy Hassan
{"title":"Energy analysis of a small-scale multi-effect distillation system powered by photovoltaic and thermal collectors","authors":"Mahmoud Sheta, A. Elwardany, S. Ookawara, Hamdy Hassan","doi":"10.30521/jes.1160462","DOIUrl":null,"url":null,"abstract":"Powering thermal desalination technologies by renewable energy is believed to be a viable solution to overcome the worldwide freshwater scarcity problem without causing more damage to the environment. In this paper, a multi-effect distillation system (MED) with mechanical vapor compression is powered by the generated electrical power of photovoltaic/thermal collectors and assisted by the by-product thermal power generated. The system is sized according to thermal power needed and designed for small-scale application and weather conditions of Alexandria, Egypt. Excess electricity is injected into the grid and hot water storage tank is used as a back-up to compensate low and fluctuating radiation. Results show that, at a saturation temperature of MED’s heating steam of 55 °C, freshwater production is 11.1 m3/day in 10 hours of operation, system specific power consumption is 9.72 kWh/m3, specific area is 317.04 m2s/kg, and performance ratios of the desalination unit is 3.33 and 6.97 for the overall system. However, at T = 65 °C the system’s electrical energy is totally absorbed by the compressor, and the system’s performance decreases.","PeriodicalId":52308,"journal":{"name":"Journal of Energy Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30521/jes.1160462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 2
Abstract
Powering thermal desalination technologies by renewable energy is believed to be a viable solution to overcome the worldwide freshwater scarcity problem without causing more damage to the environment. In this paper, a multi-effect distillation system (MED) with mechanical vapor compression is powered by the generated electrical power of photovoltaic/thermal collectors and assisted by the by-product thermal power generated. The system is sized according to thermal power needed and designed for small-scale application and weather conditions of Alexandria, Egypt. Excess electricity is injected into the grid and hot water storage tank is used as a back-up to compensate low and fluctuating radiation. Results show that, at a saturation temperature of MED’s heating steam of 55 °C, freshwater production is 11.1 m3/day in 10 hours of operation, system specific power consumption is 9.72 kWh/m3, specific area is 317.04 m2s/kg, and performance ratios of the desalination unit is 3.33 and 6.97 for the overall system. However, at T = 65 °C the system’s electrical energy is totally absorbed by the compressor, and the system’s performance decreases.