Development of process for beneficiation of low-grade iron ore consisting of goethite

Q2 Materials Science Minerals & Metallurgical Processing Pub Date : 2018-02-01 DOI:10.19150/MMP.8056
T. Umadevi, K. Abhishek, R. Sah, K. Marutiram
{"title":"Development of process for beneficiation of low-grade iron ore consisting of goethite","authors":"T. Umadevi, K. Abhishek, R. Sah, K. Marutiram","doi":"10.19150/MMP.8056","DOIUrl":null,"url":null,"abstract":"Low-grade iron ore received from the West Singhbhum area of Jharkhand state in India was used to develop a beneficiation flow sheet to remove alumina (Al2O3) and silica (SiO2) from the ore to get iron (Fe)-rich product for steel plants. Mineral characterization showed that the main mineral constituents present in the head sample are goethite, limonite, hematite, quartz, clay and gibbsite. The head sample contained about 49.2 percent Fe, 8.79 percent alumina and 12.01 percent silica. The received iron ore sample is amenable to upgradation through beneficiation to get pellet grade concentrate. The beneficiation process was established, involving crushing, screening, jigging, spiral separation, size reduction, desliming and magnetic separation. The process showed significant enrichment in Fe values to 63.5 percent Fe in concentrate, from 49.2 percent Fe. From the developed flow sheet, it is possible to obtain pellet grade fines with 63.5 percent Fe, 2.92 percent SiO2 and 2.61 percent Al2O3 with 50.6 percent weight recovery. The overall tailing loss is 49.4 percent with 34.3 percent Fe, 21.28 percent SiO2 and 14.64 percent Al2O3.","PeriodicalId":18536,"journal":{"name":"Minerals & Metallurgical Processing","volume":"35 1","pages":"35-45"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.19150/MMP.8056","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals & Metallurgical Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19150/MMP.8056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 3

Abstract

Low-grade iron ore received from the West Singhbhum area of Jharkhand state in India was used to develop a beneficiation flow sheet to remove alumina (Al2O3) and silica (SiO2) from the ore to get iron (Fe)-rich product for steel plants. Mineral characterization showed that the main mineral constituents present in the head sample are goethite, limonite, hematite, quartz, clay and gibbsite. The head sample contained about 49.2 percent Fe, 8.79 percent alumina and 12.01 percent silica. The received iron ore sample is amenable to upgradation through beneficiation to get pellet grade concentrate. The beneficiation process was established, involving crushing, screening, jigging, spiral separation, size reduction, desliming and magnetic separation. The process showed significant enrichment in Fe values to 63.5 percent Fe in concentrate, from 49.2 percent Fe. From the developed flow sheet, it is possible to obtain pellet grade fines with 63.5 percent Fe, 2.92 percent SiO2 and 2.61 percent Al2O3 with 50.6 percent weight recovery. The overall tailing loss is 49.4 percent with 34.3 percent Fe, 21.28 percent SiO2 and 14.64 percent Al2O3.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针铁矿低品位铁矿选矿工艺的发展
来自印度贾坎德邦West Singhbhum地区的低品位铁矿石用于制定选矿流程图,从矿石中去除氧化铝(Al2O3)和二氧化硅(SiO2),为钢铁厂生产富含铁(Fe)的产品。矿物特征表明,头样中存在的主要矿物成分为针铁矿、褐铁矿、赤铁矿、石英、粘土和三水铝石。头部样品含有约49.2%的Fe、8.79%的氧化铝和12.01%的二氧化硅。收到的铁矿石样品可通过选矿进行升级,以获得球团级精矿。建立了选矿工艺,包括破碎、筛分、跳汰、螺旋分离、减径、脱泥和磁选。该工艺显示,精矿中Fe值从49.2%显著富集至63.5%。从开发的流程图中,可以获得具有63.5%Fe、2.92%SiO2和2.61%Al2O3的颗粒级细粒,重量回收率为50.6%。尾矿总损失为49.4%,Fe含量为34.3%,SiO2含量为21.28%,Al2O3含量为14.64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Minerals & Metallurgical Processing
Minerals & Metallurgical Processing 工程技术-矿业与矿物加工
CiteScore
0.84
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: For over twenty-five years, M&MP has been your source for the newest thinking in the processing of minerals and metals. We cover the latest developments in a wide range of applicable disciplines, from metallurgy to computer science to environmental engineering. Our authors, experts from industry, academia and the government, present state-of-the-art research from around the globe.
期刊最新文献
Pressure leaching of copper concentrates at Morenci, Arizona — 10 years of experience Effect of microwave treatment on the surface properties of chalcopyrite Effects of cake thickness and pressure on the filtration of coal refuse slurry Direct sulfuric acid leaching of zinc sulfide concentrate using ozone as oxidant under atmospheric pressure Validation of electrolyte conductivity models in industrial copper electrorefining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1