{"title":"A General Mixture Model for Cognitive Diagnosis","authors":"Joemari Olea, Kevin Carl P. Santos","doi":"10.3102/10769986231176012","DOIUrl":null,"url":null,"abstract":"Although the generalized deterministic inputs, noisy “and” gate model (G-DINA; de la Torre, 2011) is a general cognitive diagnosis model (CDM), it does not account for the heterogeneity that is rooted from the existing latent groups in the population of examinees. To address this, this study proposes the mixture G-DINA model, a CDM that incorporates the G-DINA model within the finite mixture modeling framework. An expectation–maximization algorithm is developed to estimate the mixture G-DINA model. To determine the viability of the proposed model, an extensive simulation study is conducted to examine the parameter recovery performance, model fit, and correct classification rates. Responses to a reading comprehension assessment were analyzed to further demonstrate the capability of the proposed model.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986231176012","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Although the generalized deterministic inputs, noisy “and” gate model (G-DINA; de la Torre, 2011) is a general cognitive diagnosis model (CDM), it does not account for the heterogeneity that is rooted from the existing latent groups in the population of examinees. To address this, this study proposes the mixture G-DINA model, a CDM that incorporates the G-DINA model within the finite mixture modeling framework. An expectation–maximization algorithm is developed to estimate the mixture G-DINA model. To determine the viability of the proposed model, an extensive simulation study is conducted to examine the parameter recovery performance, model fit, and correct classification rates. Responses to a reading comprehension assessment were analyzed to further demonstrate the capability of the proposed model.
虽然广义确定性输入,噪声“和”门模型(G-DINA;de la Torre, 2011)是一种通用认知诊断模型(CDM),它没有考虑到考生群体中现有潜在群体的异质性。为了解决这个问题,本研究提出了混合G-DINA模型,这是一种将G-DINA模型纳入有限混合建模框架的清洁发展模型。提出了一种期望最大化算法来估计混合G-DINA模型。为了确定所提出模型的可行性,进行了广泛的模拟研究,以检查参数恢复性能,模型拟合和正确分类率。对阅读理解评估的反应进行了分析,以进一步证明所提出模型的能力。
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.