{"title":"miR-146a promotes M2 macrophage polarization and accelerates diabetic wound healing by inhibiting the TLR4/NF-κB axis.","authors":"Xuefeng Peng, Fang He, Yanling Mao, Yihui Lin, Jingwen Fang, Yangchun Chen, Zhichun Sun, Yafen Zhuo, Jianjia Jiang","doi":"10.1530/jme-21-0019","DOIUrl":null,"url":null,"abstract":"We tried to unveil the clinical significance of miR-146a as a biomarker in M2 macrophage polarization in diabetic wound healing. Initially, we found reduced miR-146a in macrophages of diabetic patients. Next, dual-luciferase assay verified that toll-like receptor 4 (TLR4) was a target gene of miR-146 and was negatively regulated by miR-146. Moreover, after ectopic expression and depletion experiments of miR-146 and/or TLR4, lipopolysaccharide-induced inflammatory response of macrophages was detected. The results revealed that overexpression of miR-146a promoted the M2 macrophage polarization by suppressing the TLR4/nuclear factor-kappaB (NF-κB) axis, so as to enhance wound healing in diabetic ulcers. Further, mouse models with diabetic ulcers were established to investigate the effects of miR-146a on diabetic wound healing in vivo, which revealed that miR-146a promoted wound healing in diabetic ulcers by inhibiting the TLR4/NF-κB axis. In conclusion, we demonstrate that miR-146a can induce M2 macrophage polarization to enhance wound healing in diabetic ulcers by inhibiting the TLR4/NF-κB axis.","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"69 2 1","pages":"315-327"},"PeriodicalIF":3.6000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/jme-21-0019","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 16
Abstract
We tried to unveil the clinical significance of miR-146a as a biomarker in M2 macrophage polarization in diabetic wound healing. Initially, we found reduced miR-146a in macrophages of diabetic patients. Next, dual-luciferase assay verified that toll-like receptor 4 (TLR4) was a target gene of miR-146 and was negatively regulated by miR-146. Moreover, after ectopic expression and depletion experiments of miR-146 and/or TLR4, lipopolysaccharide-induced inflammatory response of macrophages was detected. The results revealed that overexpression of miR-146a promoted the M2 macrophage polarization by suppressing the TLR4/nuclear factor-kappaB (NF-κB) axis, so as to enhance wound healing in diabetic ulcers. Further, mouse models with diabetic ulcers were established to investigate the effects of miR-146a on diabetic wound healing in vivo, which revealed that miR-146a promoted wound healing in diabetic ulcers by inhibiting the TLR4/NF-κB axis. In conclusion, we demonstrate that miR-146a can induce M2 macrophage polarization to enhance wound healing in diabetic ulcers by inhibiting the TLR4/NF-κB axis.
期刊介绍:
The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia.
Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.