Bin Shi, Hongsheng Liang, Zijun Xie, Qing Chang, Hongjing Wu
{"title":"Dielectric loss enhancement induced by the microstructure of CoFe2O4 foam to realize broadband electromagnetic wave absorption","authors":"Bin Shi, Hongsheng Liang, Zijun Xie, Qing Chang, Hongjing Wu","doi":"10.1007/s12613-023-2599-4","DOIUrl":null,"url":null,"abstract":"<div><p>CoFe<sub>2</sub>O<sub>4</sub> has been widely used for electromagnetic wave absorption owing to its high Snoek limit, high anisotropy, and suitable saturation magnetization; however, its inherent shortcomings, including low dielectric loss, high density, and magnetic agglomeration, limit its application as an ideal absorbent. This study investigated a microstructure regulation strategy to mitigate the inherent disadvantages of pristine CoFe<sub>2</sub>O<sub>4</sub> synthesized via a sol–gel auto-combustion method. A series of CoFe<sub>2</sub>O<sub>4</sub> foams (S0.5, S1.0, and S1.5, corresponding to foams with citric acid (CA)-to-Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O molar ratios of 0.5, 1.0, and 1.5, respectively) with two-dimensional (2D) curved surfaces were obtained through the adjustment of CA-to-Fe<sup>3+</sup> ratio, and the electromagnetic parameters were adjusted through morphology regulation. Owing to the appropriate impedance matching and conductance loss provided by moderate complex permittivity, the effective absorption bandwidth (EAB) of S0.5 was as high as 7.3 GHz, exceeding those of most CoFe<sub>2</sub>O<sub>4</sub>-based absorbents. Moreover, the EAB of S1.5 reached 5.0 GHz (8.9–13.9 GHz), covering most of the X band, owing to the intense polarization provided by lattice defects and the heterogeneous interface. The three-dimensional (3D) foam structure circumvented the high density and magnetic agglomeration issues of CoFe<sub>2</sub>O<sub>4</sub> nanoparticles, and the good conductivity of 2D curved surfaces could effectively elevate the complex permittivity to ameliorate the dielectric loss of pure CoFe<sub>2</sub>O<sub>4</sub>. This study provides a novel idea for the theoretical design and practical production of lightweight and broadband pure ferrites.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 7","pages":"1388 - 1397"},"PeriodicalIF":5.6000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2599-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
CoFe2O4 has been widely used for electromagnetic wave absorption owing to its high Snoek limit, high anisotropy, and suitable saturation magnetization; however, its inherent shortcomings, including low dielectric loss, high density, and magnetic agglomeration, limit its application as an ideal absorbent. This study investigated a microstructure regulation strategy to mitigate the inherent disadvantages of pristine CoFe2O4 synthesized via a sol–gel auto-combustion method. A series of CoFe2O4 foams (S0.5, S1.0, and S1.5, corresponding to foams with citric acid (CA)-to-Fe(NO3)3·9H2O molar ratios of 0.5, 1.0, and 1.5, respectively) with two-dimensional (2D) curved surfaces were obtained through the adjustment of CA-to-Fe3+ ratio, and the electromagnetic parameters were adjusted through morphology regulation. Owing to the appropriate impedance matching and conductance loss provided by moderate complex permittivity, the effective absorption bandwidth (EAB) of S0.5 was as high as 7.3 GHz, exceeding those of most CoFe2O4-based absorbents. Moreover, the EAB of S1.5 reached 5.0 GHz (8.9–13.9 GHz), covering most of the X band, owing to the intense polarization provided by lattice defects and the heterogeneous interface. The three-dimensional (3D) foam structure circumvented the high density and magnetic agglomeration issues of CoFe2O4 nanoparticles, and the good conductivity of 2D curved surfaces could effectively elevate the complex permittivity to ameliorate the dielectric loss of pure CoFe2O4. This study provides a novel idea for the theoretical design and practical production of lightweight and broadband pure ferrites.
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.