Applying Data Envelopment Analysis Principle in Ordinal Multi Criteria Decision Analysis

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Foundations of Computing and Decision Sciences Pub Date : 2021-06-01 DOI:10.2478/fcds-2021-0010
M. Kress
{"title":"Applying Data Envelopment Analysis Principle in Ordinal Multi Criteria Decision Analysis","authors":"M. Kress","doi":"10.2478/fcds-2021-0010","DOIUrl":null,"url":null,"abstract":"Abstract We consider a multicriteria decision analysis (MCDA) problem where importance of criteria, and evaluations of alternatives with respect to the criteria, are expressed on a qualitative ordinal scale. Using the extreme-point principle of Data Envelopment Analysis (DEA), we develop a two-parameter method for obtaining overall ratings of the alternatives when preferences and evaluations are made on an ordinal scale. We assume no parametric setup other than the two parameters that reflect minimum intensities of discriminating among rank positions: one parameter for the alternatives’ ranking and one for the criteria ranking. These parameters are bounded by the ordinal input data, and they imply a universal tie among the alternatives when both parameters are selected to be zero. We describe the model, discuss its theoretical underpinning, and demonstrate its application.","PeriodicalId":42909,"journal":{"name":"Foundations of Computing and Decision Sciences","volume":"46 1","pages":"147 - 157"},"PeriodicalIF":1.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computing and Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fcds-2021-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We consider a multicriteria decision analysis (MCDA) problem where importance of criteria, and evaluations of alternatives with respect to the criteria, are expressed on a qualitative ordinal scale. Using the extreme-point principle of Data Envelopment Analysis (DEA), we develop a two-parameter method for obtaining overall ratings of the alternatives when preferences and evaluations are made on an ordinal scale. We assume no parametric setup other than the two parameters that reflect minimum intensities of discriminating among rank positions: one parameter for the alternatives’ ranking and one for the criteria ranking. These parameters are bounded by the ordinal input data, and they imply a universal tie among the alternatives when both parameters are selected to be zero. We describe the model, discuss its theoretical underpinning, and demonstrate its application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据包络分析原理在有序多准则决策分析中的应用
摘要我们考虑一个多准则决策分析(MCDA)问题,其中准则的重要性以及对备选方案相对于准则的评估以定性有序量表表示。利用数据包络分析(DEA)的极值原理,我们开发了一种双参数方法,用于在有序量表上进行偏好和评估时获得备选方案的总体评级。我们假设除了两个参数之外没有其他参数设置,这两个参数反映了等级位置之间的最小区分强度:一个参数用于备选方案的等级,另一个用于标准等级。这些参数受有序输入数据的约束,并且当两个参数都选择为零时,它们意味着备选方案之间的普遍联系。我们描述了该模型,讨论了它的理论基础,并展示了它的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Foundations of Computing and Decision Sciences
Foundations of Computing and Decision Sciences COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.20
自引率
9.10%
发文量
16
审稿时长
29 weeks
期刊最新文献
A DNA Algorithm for Calculating the Maximum Flow of a Network Traceability of Architectural Design Decisions and Software Artifacts: A Systematic Mapping Study Traveling salesman problem parallelization by solving clustered subproblems Towards automated recommendations for drunk driving penalties in Poland - a case study analysis in selected court Designing a Tri-Objective, Sustainable, Closed-Loop, and Multi-Echelon Supply Chain During the COVID-19 and Lockdowns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1