Yan Niu, N. Zhang, Mengni Zhou, Lan Yang, Jie Sun, Xue-Qing Cheng, Yanan Li, Lefan Guo, Jie Xiang, Bin Wang
{"title":"The altered network complexity of resting-state functional brain activity in schizophrenia and bipolar disorder patients","authors":"Yan Niu, N. Zhang, Mengni Zhou, Lan Yang, Jie Sun, Xue-Qing Cheng, Yanan Li, Lefan Guo, Jie Xiang, Bin Wang","doi":"10.26599/BSA.2023.9050007","DOIUrl":null,"url":null,"abstract":"Schizophrenia (SZ) and bipolar disorder (BD) are two of the most frequent mental disorders. These disorders exhibit similar psychotic symptoms, making diagnosis challenging and leading to misdiagnosis. Yet, the network complexity changes driving spontaneous brain activity in SZ and BD patients are still unknown. Functional entropy (FE) is a novel way of measuring the dispersion (or spread) of functional connectivities inside the brain. The FE was utilized in this study to examine the network complexity of the resting-state fMRI data of SZ and BD patients at three levels, including global, modules, and nodes. At three levels, the FE of SZ and BD patients was considerably lower than that of normal control (NC). At the intra-module level, the FE of SZ was substantially higher than that of BD in the cingulo-opercular network. Moreover, a strong negative association between FE and clinical measures was discovered in patient groups. Finally, we classified using the FE features and attained an accuracy of 66.7% (BD vs. SZ vs. NC) and an accuracy of 75.0% (SZ vs. BD). These findings proposed that network connectivity’s complexity analyses using FE can provide important insights for the diagnosis of mental illness.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Science Advances","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26599/BSA.2023.9050007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are two of the most frequent mental disorders. These disorders exhibit similar psychotic symptoms, making diagnosis challenging and leading to misdiagnosis. Yet, the network complexity changes driving spontaneous brain activity in SZ and BD patients are still unknown. Functional entropy (FE) is a novel way of measuring the dispersion (or spread) of functional connectivities inside the brain. The FE was utilized in this study to examine the network complexity of the resting-state fMRI data of SZ and BD patients at three levels, including global, modules, and nodes. At three levels, the FE of SZ and BD patients was considerably lower than that of normal control (NC). At the intra-module level, the FE of SZ was substantially higher than that of BD in the cingulo-opercular network. Moreover, a strong negative association between FE and clinical measures was discovered in patient groups. Finally, we classified using the FE features and attained an accuracy of 66.7% (BD vs. SZ vs. NC) and an accuracy of 75.0% (SZ vs. BD). These findings proposed that network connectivity’s complexity analyses using FE can provide important insights for the diagnosis of mental illness.
精神分裂症(SZ)和双相情感障碍(BD)是两种最常见的精神障碍。这些疾病表现出类似的精神病症状,使诊断具有挑战性并导致误诊。然而,在SZ和BD患者中,驱动自发脑活动的网络复杂性变化尚不清楚。功能熵(Functional entropy, FE)是一种测量大脑内部功能连接分散(或扩散)的新方法。本研究利用FE从全局、模块和节点三个层面对SZ和BD患者静息状态fMRI数据的网络复杂度进行了检测。在三个水平上,SZ和BD患者的FE明显低于正常对照(NC)。在模内水平,SZ在扣眼-眼窝网络中的FE明显高于BD。此外,在患者组中发现FE与临床措施之间存在强烈的负相关。最后,我们使用FE特征进行分类,准确率为66.7% (BD vs. SZ vs. NC),准确率为75.0% (SZ vs. BD)。这些发现表明,利用神经网络连接的复杂性分析可以为精神疾病的诊断提供重要的见解。