Highly divergent cuticular hydrocarbon profiles in the cleptobiotic ants of the Ectatomma ruidum species complex

IF 1.6 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Chemoecology Pub Date : 2020-11-13 DOI:10.1007/s00049-020-00334-0
Kenzy I. Peña-Carrillo, Chantal Poteaux, Chloé Leroy, Rubí N. Meza-Lázaro, Jean-Paul Lachaud, Alejandro Zaldívar-Riverón, Maria Cristina Lorenzi
{"title":"Highly divergent cuticular hydrocarbon profiles in the cleptobiotic ants of the Ectatomma ruidum species complex","authors":"Kenzy I. Peña-Carrillo,&nbsp;Chantal Poteaux,&nbsp;Chloé Leroy,&nbsp;Rubí N. Meza-Lázaro,&nbsp;Jean-Paul Lachaud,&nbsp;Alejandro Zaldívar-Riverón,&nbsp;Maria Cristina Lorenzi","doi":"10.1007/s00049-020-00334-0","DOIUrl":null,"url":null,"abstract":"<p>In social insects, chemical communication is the main communication mode among colony members, which use the blends of cuticular hydrocarbons as recognition cues to discriminate between nestmates and non-nestmates and to prevent the exploitation of their nest resources by aliens. The aim of this study was to assess the variation of nestmate recognition cues in the ant <i>Ectatomma ruidum</i>, a species complex with a considerably conserved morphology and one of the few ant species where intraspecific thievery, a form of cleptoparasitism, has been reported. We analyzed the cuticular hydrocarbon profiles of ants collected from a number of geographically separated populations and examined DNA sequence data to assess their species identity. We focused on one species of the complex, <i>E. ruidum</i> sp. 3–4, whose species delineation remains controversial. We documented that several quantitative and qualitative traits of the cuticular hydrocarbon profiles varied significantly between populations, indicating that this species harbors more cuticular chemical phenotypic diversity than expected within a single species. In particular, there was a striking divergence among populations in the proportion of methylalkanes, alkenes, alkadienes and odd-chain components, which likely play a major role in nestmate/non-nestmate discrimination, a process which might have been crucial in these cleptobiotic ants. Further investigations are needed to test the hypothesis that biotic pressures, such as the need to discriminate conspecific intruders and limit thievery, could have played an important role in promoting the evolutionary divergence between populations in this ant species complex.</p>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"31 2","pages":"125 - 135"},"PeriodicalIF":1.6000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00049-020-00334-0","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-020-00334-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

In social insects, chemical communication is the main communication mode among colony members, which use the blends of cuticular hydrocarbons as recognition cues to discriminate between nestmates and non-nestmates and to prevent the exploitation of their nest resources by aliens. The aim of this study was to assess the variation of nestmate recognition cues in the ant Ectatomma ruidum, a species complex with a considerably conserved morphology and one of the few ant species where intraspecific thievery, a form of cleptoparasitism, has been reported. We analyzed the cuticular hydrocarbon profiles of ants collected from a number of geographically separated populations and examined DNA sequence data to assess their species identity. We focused on one species of the complex, E. ruidum sp. 3–4, whose species delineation remains controversial. We documented that several quantitative and qualitative traits of the cuticular hydrocarbon profiles varied significantly between populations, indicating that this species harbors more cuticular chemical phenotypic diversity than expected within a single species. In particular, there was a striking divergence among populations in the proportion of methylalkanes, alkenes, alkadienes and odd-chain components, which likely play a major role in nestmate/non-nestmate discrimination, a process which might have been crucial in these cleptobiotic ants. Further investigations are needed to test the hypothesis that biotic pressures, such as the need to discriminate conspecific intruders and limit thievery, could have played an important role in promoting the evolutionary divergence between populations in this ant species complex.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高度分化的表皮碳氢化合物分布在钩生蚁的ectomma ruidum种复合体
在群居昆虫中,化学通信是群体成员之间的主要通信方式,它们利用表皮上的碳氢化合物混合物作为识别线索来区分巢友和非巢友,防止外来生物对其巢资源的利用。本研究的目的是评估蚁群识别线索的变异,蚁群是一个物种复合体,具有相当保守的形态,是少数种内偷窃的蚂蚁之一,一种形式的寄生,已被报道。我们分析了从地理上分离的蚁群中收集的蚂蚁表皮碳氢化合物剖面,并检查了DNA序列数据以评估其物种身份。我们集中研究了该复合体的一个物种,E. ruidum sp. 3-4,其物种划分仍有争议。我们记录了不同种群间表皮烃谱的一些定量和定性特征差异显著,表明该物种的表皮化学表型多样性高于单一物种。特别是,在种群之间,甲基烷烃、烯烃、烷烯和奇链成分的比例存在显著差异,这些成分可能在巢蚁/非巢蚁的歧视中起主要作用,这一过程可能对这些食蚁至关重要。需要进一步的研究来验证这样的假设,即生物压力,如区分同种入侵者和限制盗窃的需要,可能在促进这种蚂蚁物种复杂的种群之间的进化分歧中发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemoecology
Chemoecology 环境科学-生化与分子生物学
CiteScore
4.20
自引率
0.00%
发文量
11
审稿时长
>36 weeks
期刊介绍: It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.
期刊最新文献
Pyrrolizidine alkaloids in tiger moths: trends and knowledge gaps Cuticular hydrocarbons as host recognition cues in specialist and generalist endoparasitoids How to chew gum: the post-ingestion fate of foliar secondary compounds consumed by a eucalypt herbivore Correction: The variability of iridomyrmecin, the venom of the Argentine ant, in its native and invasive ranges Exploring the venom of Ectatomma brunneum Smith (Hymenoptera: Formicidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1