{"title":"Three-dimensional (3D) modelling to determine the weight of massive corals in Gili Labak Island, Sumenep, Madura, East Java, Indonesia","authors":"D. Irawan, A. Mukti, S. Andriyono, F. F. Muhsoni","doi":"10.1080/14888386.2023.2184425","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study aimed to non-destructively measure the weight of massive (live) corals through three-dimensional (3D) modelling. The 3D models were constructed using the volumes and weight of massive (dead) corals. The study was conducted through photographs, 3D analysis, and weighing 32 massive (dead) coral samples. Volume and weight were modelled using linear and non-linear regressions, and their accuracy was tested using root mean square error (RMSE) and mean absolute percentage error (MAPE). This study showed that the weight of massive (live) corals could be measured using a 3D model of the massive (dead) coral’s volume and the weight mainly through regression, polynomial, and geometric equations. The power/geometric equation is a more suitable approach for determining the actual value of coral weight. Linear regression obtained an average weight of 6.13 kg per plot. Three-dimensional modelling can be widely applied to measure the massive corals in the deep sea.","PeriodicalId":39411,"journal":{"name":"Biodiversity","volume":"24 1","pages":"24 - 33"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodiversity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14888386.2023.2184425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT This study aimed to non-destructively measure the weight of massive (live) corals through three-dimensional (3D) modelling. The 3D models were constructed using the volumes and weight of massive (dead) corals. The study was conducted through photographs, 3D analysis, and weighing 32 massive (dead) coral samples. Volume and weight were modelled using linear and non-linear regressions, and their accuracy was tested using root mean square error (RMSE) and mean absolute percentage error (MAPE). This study showed that the weight of massive (live) corals could be measured using a 3D model of the massive (dead) coral’s volume and the weight mainly through regression, polynomial, and geometric equations. The power/geometric equation is a more suitable approach for determining the actual value of coral weight. Linear regression obtained an average weight of 6.13 kg per plot. Three-dimensional modelling can be widely applied to measure the massive corals in the deep sea.
BiodiversityEnvironmental Science-Nature and Landscape Conservation
CiteScore
1.80
自引率
0.00%
发文量
17
期刊介绍:
The aim of Biodiversity is to raise an appreciation and deeper understanding of species, ecosystems and the interconnectedness of the living world and thereby avoid the mismanagement, misuse and destruction of biodiversity. The Journal publishes original research papers, review articles, news items, opinion pieces, experiences from the field and book reviews, as well as running regular feature sections. Articles are written for a broad readership including scientists, educators, policy makers, conservationists, science writers, naturalists and students. Biodiversity aims to provide an international forum on all matters concerning the integrity and wellness of ecosystems, including articles on the impact of climate change, conservation management, agriculture and other human influence on biodiversity.