A Study on Creep Phenomenon after the Releasing of Injection Molded Articles

Yu-Jung Kim, H. Bang
{"title":"A Study on Creep Phenomenon after the Releasing of Injection Molded Articles","authors":"Yu-Jung Kim, H. Bang","doi":"10.7736/jkspe.023.011","DOIUrl":null,"url":null,"abstract":"Recently, with the expansion of application of polymer composite materials, high levels of deformation compensation actions have been developed. However, there is a problem of high-temperature viscoelasticity that occurs over time after completing the injection molding process. In this study, changes of mechanical properties of the Moldflow program for injection molding were analyzed to verify the viscoelasticity phenomenon through deformation analysis. In addition, deformation analysis of plastic injection molded products according to arrangement of three ribs was conducted and two products with different geometric shapes of the same function were compared. As a result, it was possible to reflect the viscoelastic effect by reducing the elastic modulus and shear modulus of the material. It was confirmed that the geometric shape with thick ribs formed in multiple longitudinal directions was mainly responsible. On the surface of the product where the rib arrangement was parallel and perpendicular to the flow direction, the orientation was orthogonal to the linear direction and the maximum residual stress was 81.17 MPa, which showed the largest value. It was judged that viscoelastic phenomena could be predicted and that an arrangement of parallel and perpendicular ribs that might intersect should be avoided.","PeriodicalId":37663,"journal":{"name":"Journal of the Korean Society for Precision Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7736/jkspe.023.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, with the expansion of application of polymer composite materials, high levels of deformation compensation actions have been developed. However, there is a problem of high-temperature viscoelasticity that occurs over time after completing the injection molding process. In this study, changes of mechanical properties of the Moldflow program for injection molding were analyzed to verify the viscoelasticity phenomenon through deformation analysis. In addition, deformation analysis of plastic injection molded products according to arrangement of three ribs was conducted and two products with different geometric shapes of the same function were compared. As a result, it was possible to reflect the viscoelastic effect by reducing the elastic modulus and shear modulus of the material. It was confirmed that the geometric shape with thick ribs formed in multiple longitudinal directions was mainly responsible. On the surface of the product where the rib arrangement was parallel and perpendicular to the flow direction, the orientation was orthogonal to the linear direction and the maximum residual stress was 81.17 MPa, which showed the largest value. It was judged that viscoelastic phenomena could be predicted and that an arrangement of parallel and perpendicular ribs that might intersect should be avoided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
注塑制品脱模后蠕变现象的研究
近年来,随着高分子复合材料应用的扩大,高水平的变形补偿作用得到了发展。然而,在注塑成型过程完成后,随着时间的推移会出现高温粘弹性问题。本研究分析了注塑模具的Moldflow程序的力学性能变化,通过变形分析验证粘弹性现象。此外,对按三肋排列的注塑成型制品进行了变形分析,并对相同功能的两种不同几何形状的制品进行了比较。因此,可以通过降低材料的弹性模量和剪切模量来反映粘弹性效应。确定了在多个纵向方向上形成厚肋的几何形状是主要原因。在与流动方向平行和垂直的产品表面,方向与直线方向正交,最大残余应力为81.17 MPa,表现出最大的残余应力值。判断粘弹性现象是可以预测的,应避免平行和垂直肋的排列可能相交。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Korean Society for Precision Engineering
Journal of the Korean Society for Precision Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
0.50
自引率
0.00%
发文量
104
期刊介绍: Journal of the Korean Society for Precision Engineering (JKSPE) is devoted to publishing original research articles with high ethical standard on all aspects of precision engineering and manufacturing. Specifically, the journal focuses on articles related to improving the precision of machines and manufacturing processes through implementation of creative solutions that stem from advanced research using novel experimental methods, predictive modeling techniques, and rigorous analyses based on mechanical engineering or multidisciplinary approach. The expected outcomes of the knowledge disseminated from JKSPE are enhanced reliability, better motion precision, higher measurement accuracy, and sufficient reliability of precision systems. The various topics covered by JKSPE include: Precision Manufacturing processes, Precision Measurements, Robotics and Automation / Control, Smart Manufacturing System, Design and Materials, Machine Tools, Nano/Micro Technology, Biomechanical Engineering, Additive Manufacturing System, Green Manufacturing Technology.
期刊最新文献
Fabrication of Magneto-responsive Functional Surface through Removal of Residual Layer Development of Rotation and Pull-back Drive System of Catheter for Vascular Treatment Evaluation of the Manufacturing and Viral Killing Efficacy of Chitosan Microbeads Loaded with Disinfectants Micro-hole Array Ceria Functional Layer Embedded Membrane for Durable Polymer Electrolyte Membrane Fuel Cell Hybrid Triboelectric-piezoelectric Energy Harvester Utilizing Nanopatterned Film and Piezoelectric Elastomeric Sponge Layers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1