M. Hardy, Andrew C. Lang, E. Jin, N. Nepal, B. Downey, V. Gokhale, D. Scott Katzer, Virginia D. Wheeler
{"title":"Nucleation control of high crystal quality heteroepitaxial Sc0.4Al0.6N grown by molecular beam epitaxy","authors":"M. Hardy, Andrew C. Lang, E. Jin, N. Nepal, B. Downey, V. Gokhale, D. Scott Katzer, Virginia D. Wheeler","doi":"10.1063/5.0164430","DOIUrl":null,"url":null,"abstract":"High ScN fraction ScxAl1−xN has promise in important application areas including wide bandwidth RF resonators and filters, and ferroelectric devices such as non-volatile memory, but demands high crystal quality. In this work, the role of the nucleation layer (NL), ScxAl1−xN growth temperature, and strain management to preserve the wurtzite crystal structure are investigated to maximize both acoustoelectric and ferroelectric material properties for high ScN fraction ScxAl1−xN grown on SiC substrates. A 5 nm AlN nucleation layer reduces the x-ray diffraction 0002 reflection full width at half maximum (FWHM) for a Sc0.32Al0.68N film by almost a factor of 2, and reducing the growth temperature to 430 °C enables a Sc0.40Al0.60N film with a FWHM of 4100 arcsec (1.1°) while being only 150 nm thick. Grading the initial ScxAl1−xN layer from x = 0.32 to 0.40 suppresses the formation of rock-salt grain nucleation at the Sc0.40Al0.60N lower interface and reduces the anomalously oriented grain density by an order of magnitude. Increasing the total ScxAl1−xN growth thickness to 500 nm produces an average x = 0.39 ScxAl1−xN layer with a FWHM of 3190 arcsec (0.89°) and an anomalously oriented grain areal fill factor of 1.0%. These methods enable the lowest heteroepitaxial ScxAl1−xN FWHM reported for x ∼ 0.4, with layer thicknesses and defect densities appropriate for high frequency (>10 GHz) filter applications.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0164430","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
High ScN fraction ScxAl1−xN has promise in important application areas including wide bandwidth RF resonators and filters, and ferroelectric devices such as non-volatile memory, but demands high crystal quality. In this work, the role of the nucleation layer (NL), ScxAl1−xN growth temperature, and strain management to preserve the wurtzite crystal structure are investigated to maximize both acoustoelectric and ferroelectric material properties for high ScN fraction ScxAl1−xN grown on SiC substrates. A 5 nm AlN nucleation layer reduces the x-ray diffraction 0002 reflection full width at half maximum (FWHM) for a Sc0.32Al0.68N film by almost a factor of 2, and reducing the growth temperature to 430 °C enables a Sc0.40Al0.60N film with a FWHM of 4100 arcsec (1.1°) while being only 150 nm thick. Grading the initial ScxAl1−xN layer from x = 0.32 to 0.40 suppresses the formation of rock-salt grain nucleation at the Sc0.40Al0.60N lower interface and reduces the anomalously oriented grain density by an order of magnitude. Increasing the total ScxAl1−xN growth thickness to 500 nm produces an average x = 0.39 ScxAl1−xN layer with a FWHM of 3190 arcsec (0.89°) and an anomalously oriented grain areal fill factor of 1.0%. These methods enable the lowest heteroepitaxial ScxAl1−xN FWHM reported for x ∼ 0.4, with layer thicknesses and defect densities appropriate for high frequency (>10 GHz) filter applications.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces