Khalidah Al-Qayim, W. Nimmo, Kevin J. Hughe, M. Pourkashanian
{"title":"Effect of oxy-fuel combustion on ash deposition of pulverized wood pellets","authors":"Khalidah Al-Qayim, W. Nimmo, Kevin J. Hughe, M. Pourkashanian","doi":"10.18331/BRJ2019.6.1.4","DOIUrl":null,"url":null,"abstract":"Biomass is a clean alternative fuel to coal in terms of carbon, NOx, and SO2 emissions in the power generation sector. However, ash deposition problems have been a concern with biomass fuels due to the high alkali and residual sulphur contents in the ash forming particles. In this study, the influence of oxy-fuel firing conditions of wood pellets combustion on ash partitioning and deposit formation, were investigated experimentally on a 250-kW pilot scale pulverized furnace and theoretically through chemical equilibrium modelling using the FactSage program. Oxy-fuel combustion case was compared with air-fuel case in this assessment. The results of this study showed that wood pellets had a low tendency for radiation zone slagging, but, had a high fouling tendency in the convective passes. It is possible that oxy-fuel combustion inhibited the release of volatile elements to the gas phase in the initial stages of the combustion, thus reducing the alkali sulphates slagging, increasing however, the alkali sulphate fouling tendencies on the convective passes. Moreover, the effect of the oxy-fuel environment on the ash formation was significant. The chemical equilibrium modelling showed reasonable predictions of the ash behaviour of wood pellets in terms of alkali behaviour and explained to some extent the influence of the oxy environment on ash deposit formation.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuel Research Journal-BRJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18331/BRJ2019.6.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 8
Abstract
Biomass is a clean alternative fuel to coal in terms of carbon, NOx, and SO2 emissions in the power generation sector. However, ash deposition problems have been a concern with biomass fuels due to the high alkali and residual sulphur contents in the ash forming particles. In this study, the influence of oxy-fuel firing conditions of wood pellets combustion on ash partitioning and deposit formation, were investigated experimentally on a 250-kW pilot scale pulverized furnace and theoretically through chemical equilibrium modelling using the FactSage program. Oxy-fuel combustion case was compared with air-fuel case in this assessment. The results of this study showed that wood pellets had a low tendency for radiation zone slagging, but, had a high fouling tendency in the convective passes. It is possible that oxy-fuel combustion inhibited the release of volatile elements to the gas phase in the initial stages of the combustion, thus reducing the alkali sulphates slagging, increasing however, the alkali sulphate fouling tendencies on the convective passes. Moreover, the effect of the oxy-fuel environment on the ash formation was significant. The chemical equilibrium modelling showed reasonable predictions of the ash behaviour of wood pellets in terms of alkali behaviour and explained to some extent the influence of the oxy environment on ash deposit formation.
期刊介绍:
Biofuel Research Journal (BRJ) is a leading, peer-reviewed academic journal that focuses on high-quality research in the field of biofuels, bioproducts, and biomass-derived materials and technologies. The journal's primary goal is to contribute to the advancement of knowledge and understanding in the areas of sustainable energy solutions, environmental protection, and the circular economy. BRJ accepts various types of articles, including original research papers, review papers, case studies, short communications, and hypotheses. The specific areas covered by the journal include Biofuels and Bioproducts, Biomass Valorization, Biomass-Derived Materials for Energy and Storage Systems, Techno-Economic and Environmental Assessments, Climate Change and Sustainability, and Biofuels and Bioproducts in Circular Economy, among others. BRJ actively encourages interdisciplinary collaborations among researchers, engineers, scientists, policymakers, and industry experts to facilitate the adoption of sustainable energy solutions and promote a greener future. The journal maintains rigorous standards of peer review and editorial integrity to ensure that only impactful and high-quality research is published. Currently, BRJ is indexed by several prominent databases such as Web of Science, CAS Databases, Directory of Open Access Journals, Scimago Journal Rank, Scopus, Google Scholar, Elektronische Zeitschriftenbibliothek EZB, et al.