Inference without compatibility: Using exponential weighting for inference on a parameter of a linear model

IF 1.7 2区 数学 Q2 STATISTICS & PROBABILITY Bernoulli Pub Date : 2021-05-01 DOI:10.3150/20-BEJ1280
Michael Law, Y. Ritov
{"title":"Inference without compatibility: Using exponential weighting for inference on a parameter of a linear model","authors":"Michael Law, Y. Ritov","doi":"10.3150/20-BEJ1280","DOIUrl":null,"url":null,"abstract":"We consider hypotheses testing problems for three parameters in high-dimensional linear models with minimal sparsity assumptions of their type but without any compatibility conditions. Under this framework, we construct the first n-consistent estimators for low-dimensional coefficients, the signal strength, and the noise level. We support our results using numerical simulations and provide comparisons with other estimators.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":"27 1","pages":"1467-1495"},"PeriodicalIF":1.7000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/20-BEJ1280","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

We consider hypotheses testing problems for three parameters in high-dimensional linear models with minimal sparsity assumptions of their type but without any compatibility conditions. Under this framework, we construct the first n-consistent estimators for low-dimensional coefficients, the signal strength, and the noise level. We support our results using numerical simulations and provide comparisons with other estimators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不兼容的推理:使用指数加权对线性模型的参数进行推理
我们考虑高维线性模型中三个参数的假设检验问题,具有其类型的最小稀疏性假设,但没有任何相容性条件。在这个框架下,我们构造了低维系数、信号强度和噪声水平的第一个n-一致估计量。我们使用数值模拟来支持我们的结果,并提供与其他估计量的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bernoulli
Bernoulli 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
116
审稿时长
6-12 weeks
期刊介绍: BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work. BERNOULLI will publish: Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed. Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research: Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments. Scholarly written papers on some historical significant aspect of statistics and probability.
期刊最新文献
Semiparametric regression of panel count data with informative terminal event. Bootstrap inference in functional linear regression models with scalar response Cramér type moderate deviations for the Grenander estimator near the boundaries of the support Joint density of the stable process and its supremum: Regularity and upper bounds On the mean perimeter density of inhomogeneous random closed sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1