{"title":"FAIR data sharing: An international perspective on why medical researchers are lagging behind","authors":"L. Rainey, J. Lutomski, M. Broeders","doi":"10.1177/20539517231171052","DOIUrl":null,"url":null,"abstract":"FAIR data, that is, Findable, Accessible, Interoperable, and Reusable data, and Big Data intersect across issues related to data storage, access, and processing. The solution-oriented FAIR principles serve an integral role in improving Big Data; yet to date, the implementation of FAIR in multiple sectors has been fragmented. We conducted an exploratory analysis to identify incentives and barriers in creating FAIR data in the medical sector using digital concept mapping, a systematic mixed methods approach. Thirty-eight principal investigators (PIs) were recruited from North America, Europe, and Oceania. Our analysis revealed five clusters rated according to perceived relevance: ‘Efficiency and collaboration’ (rating 7.23), ‘Privacy and security’ (rating 7.18), ‘Data management standards’ (rating 7.16), ‘Organization of services’ (rating 6.98), and ‘Ownership’ (rating 6.28). All five clusters scored relatively high and within a narrow range (i.e., 6.28–7.69), implying that each cluster likely influences researchers’ decision-making processes. PIs harbor a positive view of FAIR data sharing, as exemplified by participants highly prioritizing ‘Efficiency and collaboration’. However, the other four clusters received only modestly lower ratings and largely contained barriers to FAIR data sharing. When viewed collectively, the benefits of efficiency and collaboration may not be sufficient in propelling FAIR data sharing. Arguably, until more of these reported barriers are addressed, widespread support of FAIR data will not translate into widespread practice. This research lays the preliminary foundation for conducting targeted large-scale research into FAIR data practices in the medical research community.","PeriodicalId":47834,"journal":{"name":"Big Data & Society","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data & Society","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/20539517231171052","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
FAIR data, that is, Findable, Accessible, Interoperable, and Reusable data, and Big Data intersect across issues related to data storage, access, and processing. The solution-oriented FAIR principles serve an integral role in improving Big Data; yet to date, the implementation of FAIR in multiple sectors has been fragmented. We conducted an exploratory analysis to identify incentives and barriers in creating FAIR data in the medical sector using digital concept mapping, a systematic mixed methods approach. Thirty-eight principal investigators (PIs) were recruited from North America, Europe, and Oceania. Our analysis revealed five clusters rated according to perceived relevance: ‘Efficiency and collaboration’ (rating 7.23), ‘Privacy and security’ (rating 7.18), ‘Data management standards’ (rating 7.16), ‘Organization of services’ (rating 6.98), and ‘Ownership’ (rating 6.28). All five clusters scored relatively high and within a narrow range (i.e., 6.28–7.69), implying that each cluster likely influences researchers’ decision-making processes. PIs harbor a positive view of FAIR data sharing, as exemplified by participants highly prioritizing ‘Efficiency and collaboration’. However, the other four clusters received only modestly lower ratings and largely contained barriers to FAIR data sharing. When viewed collectively, the benefits of efficiency and collaboration may not be sufficient in propelling FAIR data sharing. Arguably, until more of these reported barriers are addressed, widespread support of FAIR data will not translate into widespread practice. This research lays the preliminary foundation for conducting targeted large-scale research into FAIR data practices in the medical research community.
期刊介绍:
Big Data & Society (BD&S) is an open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities, and computing and their intersections with the arts and natural sciences. The journal focuses on the implications of Big Data for societies and aims to connect debates about Big Data practices and their effects on various sectors such as academia, social life, industry, business, and government.
BD&S considers Big Data as an emerging field of practices, not solely defined by but generative of unique data qualities such as high volume, granularity, data linking, and mining. The journal pays attention to digital content generated both online and offline, encompassing social media, search engines, closed networks (e.g., commercial or government transactions), and open networks like digital archives, open government, and crowdsourced data. Rather than providing a fixed definition of Big Data, BD&S encourages interdisciplinary inquiries, debates, and studies on various topics and themes related to Big Data practices.
BD&S seeks contributions that analyze Big Data practices, involve empirical engagements and experiments with innovative methods, and reflect on the consequences of these practices for the representation, realization, and governance of societies. As a digital-only journal, BD&S's platform can accommodate multimedia formats such as complex images, dynamic visualizations, videos, and audio content. The contents of the journal encompass peer-reviewed research articles, colloquia, bookcasts, think pieces, state-of-the-art methods, and work by early career researchers.