{"title":"Parameter interpretations of wave dispersion and attenuation in rock physics based on deep neural network","authors":"Bochen Wang, Jiawei Liu, Zhenwei Guo","doi":"10.1093/jge/gxad058","DOIUrl":null,"url":null,"abstract":"\n Acoustic wave features, including the velocity dispersion and attenuation, induced by fluid flow in porous media have attracted significant attention in reservoir exploration. To enhance the quantitative understanding of these features, various wave propagation mechanisms have been developed. It has been discovered that wave dispersion and attenuation are associated with multiple reservoir parameters, each with different sensitivity. It is difficult to distinguish the impacts of individual physical parameter on acoustic features by the traditional wave equations. Considering the ability of deep neural networks (DNNs) in establishing the relationships between two datasets, a fully connected DNN has been employed as a surrogate rock physics model, and the Shapley Additive exPlanations model (SHAP) based on this DNN has been introduced to evaluate the contributions of different parameters. In this study, the classic White model is utilized to generate datasets for training the DNN. Datasets include seven parameters (bulk modulus, shear modulus, and density of the solid matrix, frequency, porosity, fluid saturation, and permeability), along with velocity dispersion and attenuation. By embedding SHAP into the trained DNN, the presented ShaRock algorithm allows for a clear quantification of the contributions of various reservoir parameters to acoustic features. Furthermore, we analyse the underlying interactions between two parameters by utilizing their combined quantified contributions to the features. The application of this proposed algorithm, which is based on wave propagation mechanisms, demonstrates its potential in providing valuable insights for parameter inversions in hydrocarbon exploration.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxad058","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Acoustic wave features, including the velocity dispersion and attenuation, induced by fluid flow in porous media have attracted significant attention in reservoir exploration. To enhance the quantitative understanding of these features, various wave propagation mechanisms have been developed. It has been discovered that wave dispersion and attenuation are associated with multiple reservoir parameters, each with different sensitivity. It is difficult to distinguish the impacts of individual physical parameter on acoustic features by the traditional wave equations. Considering the ability of deep neural networks (DNNs) in establishing the relationships between two datasets, a fully connected DNN has been employed as a surrogate rock physics model, and the Shapley Additive exPlanations model (SHAP) based on this DNN has been introduced to evaluate the contributions of different parameters. In this study, the classic White model is utilized to generate datasets for training the DNN. Datasets include seven parameters (bulk modulus, shear modulus, and density of the solid matrix, frequency, porosity, fluid saturation, and permeability), along with velocity dispersion and attenuation. By embedding SHAP into the trained DNN, the presented ShaRock algorithm allows for a clear quantification of the contributions of various reservoir parameters to acoustic features. Furthermore, we analyse the underlying interactions between two parameters by utilizing their combined quantified contributions to the features. The application of this proposed algorithm, which is based on wave propagation mechanisms, demonstrates its potential in providing valuable insights for parameter inversions in hydrocarbon exploration.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.