Gaussian random fields: with and without covariances

IF 0.4 Q4 STATISTICS & PROBABILITY Theory of Probability and Mathematical Statistics Pub Date : 2021-11-23 DOI:10.1090/tpms/1163
N. Bingham, T. Symons
{"title":"Gaussian random fields: with and without covariances","authors":"N. Bingham, T. Symons","doi":"10.1090/tpms/1163","DOIUrl":null,"url":null,"abstract":"We begin with isotropic Gaussian random fields, and show how the Bochner–Godement theorem gives a natural way to describe their covariance structure. We continue with a study of Matérn processes on Euclidean space, spheres, manifolds and graphs, using Bessel potentials and stochastic partial differential equations (SPDEs). We then turn from this continuous setting to approximating discrete settings, Gaussian Markov random fields (GMRFs), and the computational advantages they bring in handling large data sets, by exploiting the sparseness properties of the relevant precision (concentration) matrices.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

We begin with isotropic Gaussian random fields, and show how the Bochner–Godement theorem gives a natural way to describe their covariance structure. We continue with a study of Matérn processes on Euclidean space, spheres, manifolds and graphs, using Bessel potentials and stochastic partial differential equations (SPDEs). We then turn from this continuous setting to approximating discrete settings, Gaussian Markov random fields (GMRFs), and the computational advantages they bring in handling large data sets, by exploiting the sparseness properties of the relevant precision (concentration) matrices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高斯随机场:有和无协变量
我们从各向同性高斯随机场开始,并展示Bochner-Godement定理如何给出一种自然的方法来描述它们的协方差结构。我们继续用贝塞尔势和随机偏微分方程(SPDEs)研究欧几里得空间、球、流形和图上的mat过程。然后,我们从这种连续设置转向近似离散设置,高斯马尔可夫随机场(gmrf),以及它们在处理大型数据集时带来的计算优势,通过利用相关精度(浓度)矩阵的稀疏性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
期刊最新文献
Bounded in the mean and stationary solutions of second-order difference equations with operator coefficients Characterization of the least squares estimator: Mis-specified multivariate isotonic regression model with dependent errors Full inference for the anisotropic fractional Brownian field The Burgers-type equation driven by a stochastic measure Temporal properties of the stochastic fractional heat equation with spatially-colored noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1